Studies on the Total Synthesis of Amphidinolide 0. A Stereoselective Synthesis of C3-C11 Fragment

Jin-Hyun Pang, Young-Jin Ham, and Duck-Hyung Lee*
Department of Chemistry, Sogang University, Shinsoo-dong 1, Mapo-gu, Seoul 121-742, Korea Received March 25, 2003

Key Words : Amphidinolide O, Cytotoxic macrolide, Stereoselective synthesis, Diastereoselective syn-aldol reaction, 1,3-anti-Selective reduction of β-hydroxy ketone

The amphidinolides were isolated from the marine dinoflagellate Amphidinium sp., and Amphidinolide O (1) displayed potent in vitro cytotoxicity against L1210 marine leukemia cells and human epidermoid carcinoma KB cells ($\mathrm{IC}_{50}: 1.7$ and $3.6 \mu \mathrm{~g} / \mathrm{mL}$, respectively). ${ }^{1}$ Until now, the total synthesis of amphidinolide $\mathrm{J},{ }^{2} \mathrm{~K},{ }^{3}$ and P^{4} were reported by Williams' group, and many synthetic studies for amphidinolide $\mathrm{A},{ }^{5} \mathrm{~B},{ }^{6} \mathrm{C},{ }^{7} \mathrm{G},{ }^{8} \mathrm{H},{ }^{8}$ and $\mathrm{L}^{8,9}$ have been published. Recently, the synthesis of $\mathrm{C} 12-\mathrm{C} 17$ fragment $\mathbf{3}$ of amphidinolide O (1) was reported in this laboratory ${ }^{10}$ and we describe herein the diastereoselective synthesis of the other C3-C11 fragment $\mathbf{2 0}$ of amphidinolide $\mathrm{O}(\mathbf{1})$.
The retrosynthetic analysis of amphidinolide O (1) led to the C1-C11 fragment 2 and C12 C17 fragment 3 through cleavage of $\mathrm{C} 1-\mathrm{O}$ and $\mathrm{C} 11-\mathrm{C} 12$ bond (Scheme 1) as proposed in the our paper. ${ }^{10}$ The hemiketal moiety of fragment $\mathbf{2}$ was expected from the Weinreb amide $\mathbf{4}$, and the coupling reaction of an aldehyde 5 and vinyl organometallic compound 6 would provide the Weinreb amide 4. The amide 5 should be easily available via Evans asymmetric syn-aldol protocol.
First, Evans oxazolidinone 7 was treated successively with

Scheme 1. Retrosynthetic Analysis of Amphidinolide O (1).

[^0]$n-\mathrm{BuLi}$ (1.05 equiv.) and propionyl chloride (1.3 equiv.) to afford the carboximide $\mathbf{8}$ in 85% yield (Scheme 2). ${ }^{11}$ Enolization of $\mathbf{8}$ with TiCl_{4} (1.05 equiv.) and Hunig's base (1.15 equiv.) was followed by reaction with the aldehyde 9 to provide the syn-aldol product $\mathbf{1 0}$ with high diastereoselectivity (> $97: 3$ by NMR analysis). ${ }^{12}$ The aldehyde 9 was prepared in two steps from 1,3-propanediol via selective protection of one primary alcohol with p-methoxybenzyl chloride and Swern oxidation of the remaining primary alcohol. ${ }^{13}$ The syn-aldol product $\mathbf{1 0}$ was successively treated with N, O-dimethylhydroxylamine hydrochloride (5.0 equiv.) and $\mathrm{Al}(\mathrm{Me})_{3}$ (5.0 equiv.) to give the Weinreb amide $\mathbf{1 1}$ in 90% yield. ${ }^{14}$ Purification of $\mathbf{1 1}$ was facilitated by efficient crystallization of the recyclable oxazolidinone auxiliary 7 ($80-90 \%$) from the reaction mixture. The hydroxyl group of 11 was then treated with TBSOTf (1.2 equiv.) and 2,6lutidine (2.0 equiv.) to provide the TBS ether $\mathbf{1 2}$ in 92% yield ${ }^{15}$ and the PMB group of $\mathbf{1 2}$ was deprotected with 10% $\mathrm{Pd}-\mathrm{C}$ in ethyl acetate and ethanol at room temperature in 88% yield. ${ }^{16}$ And the primary alcohol 13 was oxidized by Swern protocol into the aldehyde 14 in 85% yield. ${ }^{17}$

Next, the vinyl stannane $\mathbf{1 5}$ was prepared from 3-butyn-1-

Scheme 2. Synthesis of C1-C11 fragment of amphidinolide O. (a) n-BuLi, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 85 \%$; (b) $\mathrm{TiCl}_{4}, i-$ $\mathrm{Pr}_{2} \mathrm{NEt}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h} ; 9, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $-40^{\circ} \mathrm{C}, 1 \mathrm{~h}, 70 \%$; (c) $\mathrm{HN}\left(\mathrm{CH}_{3}\right) \mathrm{OCH}_{3}-\mathrm{HCl}, \mathrm{AlMe}_{3}, \mathrm{THF}, \mathrm{rt}, 5 \mathrm{~h}, 90 \%$; (d) TBSOTf, 2,6lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 92 \%$; (e) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc} /$ $\mathrm{EtOH}(1: 1)$, rt, $12 \mathrm{~h}, 88 \%$: (f) $(\mathrm{COCl})_{2}$, DMSO, TEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ ${ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 85 \%$.

Scheme 3. Synthesis of Tin Reagent 15. (a) $\mathrm{NaH}, \mathrm{DMF}, 0^{\circ} \mathrm{C}, 30$ $\min ; \mathrm{PMBCl}, \mathrm{rt}, 1 \mathrm{~d}, 70 \%$; (b) ($n-\mathrm{Bu})_{3} \mathrm{SnH}, \mathrm{AIBN}$, toluene, $130^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 70 \%$.
ol in two step sequences (Scheme 3): PMB protection of alcohol with p-methoxybenzyl chloride (1.0 equiv.) in $\mathrm{DMF}^{18 \mathrm{a}}$ and hydrostannylation of the alkyne moiety with n tributyltin hydride (1.5 equiv.) in the presence of a catalytic amount of AIBN. ${ }^{18 b}$
And the vinyl stannane $\mathbf{1 5}$ was lithiated with $n-\mathrm{BuLi}$ (1.5 equiv.) at $-40^{\circ} \mathrm{C}$ for 1 h and the resulting lithium reagent was added to the aldehyde $\mathbf{1 4}$ to furnish the diastereomeric mixtures of secondary alcohols 16 in 70% yield (Scheme 4). ${ }^{19}$ The alcohols 16 were oxidized with Dess-Martin periodinane (1.3 equiv.) to give the ketone $\mathbf{1 7}$ in 84% yield, ${ }^{20}$ while oxidation of $\mathbf{1 6}$ with PCC or PDC resulted in significant isomerization at the α-chiral center. Desilylation of the ketone $\mathbf{1 7}$ was achieved by 48% aqueous HF in acetonitrile ($5: 95 \mathrm{v} / \mathrm{v}$) at $0^{\circ} \mathrm{C}$, leading to β-hydroxy ketone 18 in 65\% yield. A hydroxyl group-directed 1,3-antireduction of 18 with $\mathrm{NaBH}(\mathrm{OAc})_{3}$ (1.5 equiv.) provided the 1,3-anti-diol 19 in 72% yield with moderate 1,3 -stereoselectivity (84:16). ${ }^{21}$ The diol 19 was then treated with 2,2dimethoxypropane (10.0 equiv.) in the presence of a catalytic amount of PPTS to give the acetonide $\mathbf{2 0}$ in 65% yield.

Scheme 4. Synthesis of C3-C11 fragment of amphidinolide O. (a) n-BuLi, THF, $-78^{\circ} \mathrm{C}$, 20 min , then $-40^{\circ} \mathrm{C}, 40 \mathrm{~min}$; (E)- $\mathrm{Bu}_{3} \mathrm{SnCH}$ $=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OPMB}$ (15), 70%; (b) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 12 \mathrm{~h}, 84 \%$; (c) 48% aq. $\mathrm{HF} / \mathrm{MeCN}(5: 95), 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 65 \%$; (d) $\mathrm{NaBH}(\mathrm{OAc})_{3}$, EtOAc, rt, $12 \mathrm{~h}, 72 \%$; (e) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 12 \mathrm{~h}, 65 \%$.

Scheme 5. Determination of relative stereochemistry of 1,3-anti acetonide 20.

The relative stereochemistries of 1,3-anti diol 19 and the acetonide $\mathbf{2 0}$ were determined unambiguously from ${ }^{1} \mathrm{H}$ NOE difference spectroscopy of the acetonide 20. As shown in Scheme 5, NOSEY correlations were observed between $\mathrm{C}_{5}{ }^{-}$ axial H and C_{6}-equatorial $\mathrm{H}(5.19 \%), \mathrm{C}_{6}$-axial H and $\mathrm{C}_{7}-$ equatorial H (4.03\%), and C_{5}-axial H and axial methyl group (5.86%), which confirm the anti relationship between $\mathrm{C}_{5}-\mathrm{H}$ and $\mathrm{C}_{7}-\mathrm{H}$.

In summary, Weinreb amide 20, the C3-C11 fragment of Amphidinolide $O(\mathbf{1})$, was prepared stereoselectively via 11 step sequences in 4.0% overall yield.

Acknowledgement. This research was assisted financially by Korea Science and Engineering Foundation (R01-2000-000-00048-0).

References

1. Ishibashi, M.; Takahashi, M.; Kobayashi, J. J. Org. Chem. 1995, 60, 6022-6066.
2. Williams, D. R.; Kissel, W. S. J. Am. Chem. Soc. 1998, 120, 11198-11199.
3. Williams, D. R.; Meyer, K. G. In Abstracts of Papers, 218th National Meeting of the American Chemical Society; American Chemical Society: Washington, DC, 1999; ORGN-578.
4. Williams, D. R.; Myers, B. J.; Mi, L. Org. Lett. 2000, 2, 945-948.
5. (a) Hollingworth, G. J.; Pattenden, G. Tetrahedron Lett. 1998, 39, 703-706. (b) Terrell, L. R.; Ward III, J. S.; Maleczka Jr, R. E. Tetrahedron Lett. 1999, 40, 3097-3100.
6. (a) Lee, D. H.; Lee, S. W. Tetrahedron Lett. 1997, 38, 7909-7910. (b) Lee, D. H.; Rho, M. D. Tetrahedron Lett. 2000, 41, 2573-2576 and references therein.
7. Ishiyama, H.; Ishibashi, M.; Kobayashi, J. Chem. Pharm. Bull. 1996, 44, 1819-1822.
8. (a) Chakraborty, T. K.; Suresh, V. R. Tetrahedron Lett. 1998, 39, 9109-9112. (b) Chakraborty, T. K.; Suresh, V. R. Tetrahedron Lett. 1998, 39, 7775-7778.
9. Kobayashi, J.; Hatakeyama, A.; Tsuda, M. Tetrahedron 1998, 54, 697-704.
10. Pang, J. H.; Lee, D. H. Bull. Korean Chem. Soc. 2002, 23, 1173-1176.
11. Evans, D. A.; Ennis, M. D.; Mather, D. J. J. Am. Chem. Soc. 1982, 104, 1737-1739.
12. (a) Mapp, A. K.; Heathcock, C. H. J. Org. Chem. 1999, 64, 23-27. (b) Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Cardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001-7031.
13. (a) Rorig, K.; Johnston, D.; Hamilton, R.; Telinski, T. J. Org. Synth., Coll. Vol. IV. 1963, 576-579. (b) Urbanek, R. A.; Sabes, S. F.; Forsyth, C. J. J. Am. Chem. Soc. 1998, 120, 2523-2533.

14. Jones, T. K.; Reamer, R. A.; Desmond, R.; Mills, S. G. J. Am. Chem. Soc. 1990, 112, 2998-3017.
15. Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455-3458.
16. Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.; Yonemitsu, O. Tetrahedron 1986, 42, 3021-3028.
17. Mancuso, A. J.; Swern, D. Synthesis 1981, 165-196.
18. (a) Urbanek, R. A.; Sabes, S. F.; Forsyth, C. J. J. Am. Chem. Soc. 1998, 120, 2523-2533. (b) Chen, S-M. L.; Schaub, R. E.; Grudzinskas, C. V. J. Org. Chem. 1978, 43, 3450-3454.
19. Nicolaou, K. C.; Webber, S. E. Synthesis 1986, 453-462.
20. Dess, D. B.; Matin, J. C. J. Org. Chem. 1983, 48, 4155-4156.
21. Sksena, A. K.; Mangiaracina, P. Tetrahedron Lett. 1983, 24, 273-276.

[^0]: "Corresponding author. E-mail: dhlee@ccs.sogang.ac.kr

