KOREAN CHEMICAL SOCIETY

Communications

Synthesis and Structure of Tetrahomodioxa p-Phenylcalix[4](aza)biscrowns

Kwanghyun No* and Jeong Hyeon Lee
Department of Chemistry, Sookmyung Women's University, Seoul 140-742, Korea
Received December 9, 2002

Key Words : Homooxacalix[4]arene, Calixazacrown, Conformation

Calixarenes have been intense interest as complexation hosts for ions and molecules. ${ }^{1-3}$ Tetrahomodioxacalix[4]arenes which contain two extra oxygen atoms in the macrocyclic ring, however, have been rarely studied due to their synthetic difficulty. ${ }^{4-8}$ Previously, we reported that C-1,2-alternate ${ }^{9} \mathrm{~N}, \mathrm{~N}$-diethyltetrahomodioxacalix[4]arene tetraamide showed Pb^{2+} ion selectivity. ${ }^{10}$ In the case of monoalkyl amide, however, the conformation changes to 1,3-alternate conformation because of the strong hydrogen bonding, reflecting weak extractability for metal cations. ${ }^{9}$
Calix[4]crown ethers in which the proper-sized crown
rings are incorporated into the calix[4]arene framework have been also attracted as a specific metal-selective extractant. ${ }^{11}$ 1,3-Alternate calix-bis-crowns have particularly interesting molecular features including the cation- π interaction as well as the electrostatic interaction in cation complexation. ${ }^{12}$ The family of calix[4](aza)crowns refer to molecules combining calix[4]arene elements and aza-crown units in their framework. They are constructed with aza-ethylene chains attached to the phenolic oxygen atoms of the calix via acetamido functions, which may serve as linking functions and also as chelating groups. The first 1,3-calix[4](aza)crowns were

1

2

3

$4(n-1) .5(n-2)$

Scheme 1
prepared by reaction of either calix dimethyl ester or calix diacid chloride with the appropriate diamine, $\mathrm{NH}_{2}-\mathrm{R}_{-} \mathrm{NH}_{2}$, and were shown to complex divalent and trivalent metal cations using FAB-mass spectrometry. ${ }^{13}$ After pioneering study of Rheinhoudt, Bitter and Vicens research groups reported the synthesis and complexation studies of p-tert-butylcalix[4](aza)crown derivatives. ${ }^{14}$ However, crown or azacrown derivatives of homooxacalix[4]arene were not reported yet.
In a continuation of the homooxacalixarene, we synthesized tetrahomodioxa- p-phenylcalix[4](aza)biscrowns of which conformations are 1,3- and C-1,2-alternate. The synthetic route for homooxacalix[4](aza)biscrowns is depicted in Scheme. Reaction of $\mathbf{2}^{10}$ having a C-1,2 alternate conformation with ethylenediamine and dialkylenetriamine in absolute ethanol and toluene gave 3, 4 and 5, respectively. Judging from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, $\mathbf{3}$ was found in the 1,3-alternate conformation and $\mathbf{4}$ and $\mathbf{5}$ in the C-1,2alternate conformation, respectively.
In the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3},{ }^{15}$ the dimethylenoxy protons of the $\mathrm{ArCH}_{2} \mathrm{OCH}_{2} \mathrm{Ar}$ bridge showed AB doublets at 4.28 and $4.13(\Delta v=60 \mathrm{~Hz})$ with a geminal coupling constant of 14.1 Hz . In addition, a singlet peak for the methylene protons of $\mathrm{ArCH}_{2} \mathrm{Ar}$ appeared at 4.06. The ${ }^{13} \mathrm{C}$ NMR spectrum showed one peak at 68.93 ppm for the $\mathrm{ArCH} \mathrm{H}_{2} \mathrm{O}$ of bridge methyleneoxy carbons and one peak at 37.85 ppm for the $\mathrm{ArCH}_{2} \mathrm{Ar}$ bridge carbons implying that two adjacent benzene rings are in an anti orientation. These NMR data confirms that $\mathbf{3}$ is in 1,3-alternate conformation.

For $4,{ }^{16}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum, the dimethylenoxy protons of the $\mathrm{ArCH}_{2} \mathrm{OCH}_{2} \mathrm{Ar}$ bridge showed AB doublets at 4.38 and $3.80(\Delta v=232 \mathrm{~Hz})$ with a geminal coupling constant of 14.0 Hz . In addition, a doublet peaks for the methylene protons of $\mathrm{ArCH}_{2} \mathrm{Ar}$ appeared at 4.52 and 3.58 $(\Delta v=376 \mathrm{~Hz})$ with a geminal coupling constant of 13.2 Hz . The ${ }^{13} \mathrm{C}$ NMR spectrum showed one peak at 73.59 ppm for the $\mathrm{ArCH}_{2} \mathrm{O}$ of bridge methyleneoxy carbons and one peak at 30.17 ppm for the $\mathrm{ArCH}_{2} \mathrm{Ar}$ bridge carbons implying that two adjacent benzene rings are in an syn orientation. So, it is in the C-1,2-alternate conformation. The NMR spectral data of 5^{17} were similar with the those of compound 4 , the protons of the $\mathrm{ArCH}_{2} \mathrm{OCH} \mathrm{H}_{2} \mathrm{Ar}$ and $\mathrm{ArCH}_{2} \mathrm{Ar}$ bridge showed AB doublets. The ${ }^{13} \mathrm{C}$ NMR spectrum showed one peak at 73.66 ppm for the $\mathrm{ArCH}_{2} \mathrm{O}$ bridge methyleneoxy carbons and one peak at 31.42 ppm for the $\mathrm{ArCH}_{2} \mathrm{Ar}$ bridge carbons which is also indicating that two adjacent benzene rings are in a syn orientation (C-1,2-alternate conformation).
Further works on complexation experiments with 3, 4 and 5 as ligand are in progress.

Acknowledgment. This Research was supported by the Sookmyung Women's University Research Grants 2002.

References

1. Gutsche, C. D. Calixarenes Revisited; Royal Society of

Chemistry: Cambridge, 1998.
2. Calixarenes: A Versatile Class of Macrocyclic Compounds; Vicens, J.; Böhmer, V., Eds.; Kluwer: Dordrecht, 1991.
3. Böhmer, V. Angew. Chem., Int. Ed. Engl. 1995, 34, 713.
4. Gutsche, C. D.; Dhawan, B.; No, K. H.; Muthukrishnan, R. J. Am. Chem. Soc. 1981, 103, 3782.
5. Dhawan, B.; Gutsche, C. D. J. Org. Chem. 1983, 48, 1536.
6. Asfari, Z.; Harrowfield, J. M.; Ogden, M. I.; Vicens, J.; White, A. H. Angew. Chem., Int. Ed. Engl. 1991, 30, 854.
7. Marcos, P. M.; Ascenso, J. R.; Lamartine, R.; Pereira, J .L. C. Tetrahedron 1997, 53, 11791.
8. Felix, S.; Ascenso, J. R.; Lamartine, R.; Pereira, J. L. C. Syn. Commun. 1998, 28, 1793.
9. No, K.; Lee, J. H.; Yang, S. H.; Kim, M. J.; Kim, J. S. J. Org. Chem. 2002, 67, 3165.
10. No, K.; Kim, J. S.; Shon, O. J.; Yang, S. H.; Suh, I. H.; Kim, J. G.; Bartsch, R. A.; Kim, J. Y. J. Org. Chem. 2001, 66, 5976.
11. Casnati, A.; Pochini, A.; Ungaro, R.; Ugozzoli, F.; Arnaud-Neu, F.; Fanni, S.; Schwing, M.-J.; Egberink, R. J. M.; de Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 2767.
12. (a) Thuéry, P.; Nierlich, M.; Lamare, V.; Dozol, J.-F.; Asfari, Z.; Vicens, J. J. Incl. Phen. 2000, 36, 375. (b) Kim, J. S.; Pang, J. H.; Yu, I. Y.; Lee, W. K.; Suh, I. H.; Kim, J. K.; Cho, M. H.; Kim, E. T.; Ra, D. Y. J. Chem. Soc. Perkin Trans. 2 1999, 837. (c) Asfari, Z.; Weiss, J.; Pappalardo, S.; Vicens, J. Pure Appl. Chem. 1993, 65, 585.
13. Ostaszewski, R.; Stevens, T. W.; Verboom, W.; Reinhoudt, D. N. Recl. Trav. Chim. Pays-Bas 1991, 110, 294.
14. (a) Oueslati, I.; Abidi, R.; Thuéry, P.; Nierlich, M.; Asfari, Z.; Harrowfield, J.; Vicens, J. Tetrahedron Lett. 2000, 41, 8253. (b) Bitter, I.; Grun, A.; Toth, G.; Balazs, B.; Toke, L. Tetrahedron 1997, 53, 9799. (c) Bitter, I.; Grun, A.; Toth, G.; Balazs, B.; Horvath, G.; Toke, L. Tetrahedron 1998, 54, 3857.
15. 3. 63%; mp $282{ }^{\circ} \mathrm{C}$ (decompose); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.41-7.34$ (m, 24, ArH), 7.29-7.25 (m, 4, ArH), 5.89 (br. d, 4, NH, J=5.5 $\mathrm{Hz}), 4.81\left(\mathrm{~d}, 4, \mathrm{OCH}_{2} \mathrm{CO}, J=12.9 \mathrm{~Hz}\right), 4.33\left(\mathrm{~d}, 4, \mathrm{OCH}_{2} \mathrm{CO}, J=\right.$ $12.9 \mathrm{~Hz}), 4.28\left(\mathrm{~d}, 4, \mathrm{ArCH}_{2} \mathrm{O}, J=14.1 \mathrm{~Hz}\right), 4.13\left(\mathrm{~d}, 4, \mathrm{ArCH}_{2} \mathrm{O}, J\right.$ $=14.1 \mathrm{~Hz}$), $4.06\left(\mathrm{~s}, 4, \mathrm{ArCH}_{2} \mathrm{Ar}\right), 3.18$ (br. q, $4, \mathrm{NCH}_{2}, J=6.3 \mathrm{~Hz}$), 2.30 (br. q, 4, $\left.\mathrm{NCH}_{2}, J=6.3 \mathrm{~Hz}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 167.89$ $(C=O), 152.57,139.61,138.92,133.55,130.82,129.25,128.97$, $127.98,127.15,126.48(\mathrm{Ar}), 69.18\left(\mathrm{OCH}_{2} \mathrm{CO}\right), 68.93\left(\mathrm{ArCH}_{2} \mathrm{O}\right)$, $39.05\left(\mathrm{NCH}_{2}\right), 37.85\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right)$. Anal. Calcd. For $\mathrm{C}_{66} \mathrm{H}_{60} \mathrm{O}_{10} \mathrm{~N}_{4}$: C, 74.14; H, 5.66. Found: C, 74.41; H, 5.48.
16. 4. 55%; mp $290{ }^{\circ} \mathrm{C}$ (decompose); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.60$ (d, 8 , $\mathrm{Ar} H, J=7.7 \mathrm{~Hz}$), 7.53 (br. s, $8, \mathrm{Ar} H$), 7.47 (t, $8, \mathrm{ArH}, J=7.7 \mathrm{~Hz}$), $7.38(\mathrm{t}, 4, \mathrm{ArH}, J=7.4 \mathrm{~Hz}), 6.84(\mathrm{br}, 6, \mathrm{NH}), 4.94\left(\mathrm{~d}, 4, \mathrm{OCH}_{2} \mathrm{CO}\right.$, $J=11.0 \mathrm{~Hz}), 4.52\left(\mathrm{~d}, 2, \mathrm{ArCH}_{2} \mathrm{Ar}, J=13.2 \mathrm{~Hz}\right), 4.38(\mathrm{~d}, 4$, $\mathrm{ArCH}_{2} \mathrm{O}, J=14.0 \mathrm{~Hz}$), 4.23 (d, 4, $\mathrm{OCH}_{2} \mathrm{CO}, J=11.0 \mathrm{~Hz}$), 3.80 (d, $\left.4, \mathrm{ArCH}_{2} \mathrm{O}, J=14.0 \mathrm{~Hz}\right), 3.58\left(\mathrm{~d}, 2, \mathrm{ArCH}_{2} \mathrm{Ar}, J=13.2 \mathrm{~Hz}\right), 2.90$ (br. m, 4, NCH_{2}), 2.45 (br. m, 4, NCH_{2}), 2.23 (br. m, 4, NCH_{2}), 2.19 (br. m, 4, NCH_{2}). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 167.51 \quad(\mathrm{C}=\mathrm{O})$, 154.30, 139.62, 138.03, 134.91, 130.27, 129.79, 129.64, 128.96, 127.66, 127.05 (Ar), $73.59\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 67.77\left(\mathrm{OCH}_{2} \mathrm{CO}\right), 45.94$, $37.75\left(\mathrm{NCH}_{2}\right), 30.17\left(\mathrm{ArCH}_{2} \mathrm{Ar}\right)$. Anal. Calcd. For $\mathrm{C}_{76} \mathrm{H}_{70} \mathrm{O}_{10} \mathrm{~N}_{6}$: C, 72.77; H, 6.11. Found: C, 72.51; H, 6.08.
17. 5. 46%; mp $274{ }^{\circ} \mathrm{C}$ (decompose); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.51-7.29$ $(\mathrm{m}, 34, \mathrm{ArH}, \& \mathrm{~N} H), 4.88\left(\mathrm{~d}, 2, \mathrm{ArCH}_{2} \mathrm{Ar}, J=14.6 \mathrm{~Hz}\right), 4.60(\mathrm{~s}, 8$, $\mathrm{OCH}_{2} \mathrm{CO}$), 4.06 (br. d, $4, \mathrm{ArCH}_{2} \mathrm{O}, J=12.0 \mathrm{~Hz}$), 3.79 (d, 4, $\left.\mathrm{ArCH}_{2} \mathrm{O}, J=12.0 \mathrm{~Hz}\right), 3.51\left(\mathrm{~d}, 2, \mathrm{ArCH}_{2} \mathrm{Ar}, J=14.6 \mathrm{~Hz}\right), 3.18$ (br, 4, NCH_{2}), 3.07 (br, 4, NCH_{2}), 2.26 (br, 4, NCH_{2}), 2.22 (br, 4, $\left.\mathrm{NCH}_{2}\right), 1.38\left(\mathrm{br}, 8, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.27(\mathrm{C}=\mathrm{O})$, 154.92, 139.64, 137.58, 134.64, 130.44, 130.08, 129.18, 128.95, 127.82, $126.94(\mathrm{Ar}), 73.66\left(\mathrm{ArCH}_{2} \mathrm{O}\right), 68.10\left(\mathrm{OCH}_{2} \mathrm{CO}\right), 45.48$, $36.12\left(\mathrm{NCH}_{2}\right), 31.42(\mathrm{ArCH} 2 \mathrm{Ar}), 28.71\left(\mathrm{CH}_{2}\right)$. Anal. Calcd. For $\mathrm{C}_{74} \mathrm{H}_{78} \mathrm{O}_{10} \mathrm{~N}_{6}$: C, 73.37 ; H, 6.49. Found: C, 73.11 ; H, 6.28 .

