Synthesis of Tetracyclic Pyrido[2,3-b]azepine Derivatives as Analogues of Mirtazapine via \boldsymbol{N}-Acyliminium Ion Cyclization

Jae Yeol Lee, ${ }^{*}$ Sung Hun Bang, ${ }^{\dagger}$ Sook Ja Lee, ${ }^{\dagger}$ Yun Seon Song, Changbae Jin, Hokoon Park, and Yong Sup Lee ${ }^{*}$
Division of Life Sciences, Korea Institute of Science \&Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Korea
${ }^{\dagger}$ Department of Chemistry, Hankuk University of Foreign Studies, Yong-in 449-791, Korea
Received August 13, 2002

Abstract

Tetracyclic pyrido[2,3-b]azepine derivatives $\mathbf{4 a - d}$ and $\mathbf{4 f}$ as analogues of mirtazapine were synthesized via N acyliminium ion cyclization by using aromatic rings such as benzene and thiophene ring as a π-nucleophile, and evaluated for the binding affinity for α_{2}-adrenoceptor. Among tested compounds, $2,3,9,13 \mathrm{~b}$-tetrahydro$1 H$-benzo[f]pyrrolo[2,1-a]pyrido[2,3-c]azepine (4a) was the most potent ($K \mathbf{i}=0.26 \mu \mathrm{M}$) but showed about 3fold less binding affinity than mirtazapine $(K i=0.08 \mu \mathrm{M})$ for α_{2}-adrenoceptor.

Key Words : Pyrido[2,3-b]azepine, N-Acyliminium ion cyclization, α_{2}-Adrenoceptor, Mirtazapine

Introduction

Tetracyclic azepines are presented as an important class of heterocyclic skeletons occurring in a number of bioactive molecules for a variety of biological targets ${ }^{1}$ and form, in particular, the tetracyclic antidepressants such as mianserin (1, Bolvidon ${ }^{\circledR}$) and mirtazapine (2, Remeron ${ }^{\circledR}$): Mirtazapine enhances noradrenaline (NA) and serotonin (5-HT) release by blocking the inhibitory presynaptic α_{2}-adrenergic autoreceptors and stimulating the $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptors. ${ }^{2,3}$ Therefore, many synthetic efforts have been directed toward synthesis of tetracyclic azepine derivatives because of their unique structural features and biological activities. ${ }^{4}$ Recently, we have also reported the synthesis of dibenzo[$c, f]$ azepine and benzo $[f]$ thieno[3,2-c]azepine derivatives (3) as analogues of mianserin. ${ }^{5}$

In this work, we wish to describe the synthesis and the binding affinities of tetracyclic pyrido[2,3-b]azepine derivatives 4 for α_{2}-adrenoceptor as analogues of mirtazapine including the binding affinities data of benzo[$b]$ azepine derivatives 3 .

1 mianserin

3

2 mirtazapine

4

Figure 1. Representative tetracyclic azepine compounds.

Experimental Section

Materials and measurements. All compounds used in the synthesis were of reagent grade and used without further purification, and the solvents were freshly distilled by using standard purification methods. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Gemini Varian-300 (300 MHz) spectrometer. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Gemini Varian-300 (75 MHz) spectrometer. Infrared (IR) spectra were recorded on Perkin Elmer 16-PC FT-IR using a potassium bromide pellet. Low (EI) resolution mass spectra were determined on HP GC 5972 and HP MS 5988A system at 70 eV . Dibenzo$[c, f]$ azepines (3a-b) and benzo[f]thieno[3,2-c]azepines (3cd) were obtained by the procedure reported in the literature. ${ }^{5}$

General procedure for the preparation of cyclic imides (6a-f). To a solution of 3-benzyl-2-aminopyridine (5a, 2.9 g , 15.2 mmol) in 50 mL of xylene was added succinic anhydride $(2.3 \mathrm{~g}, 22.9 \mathrm{mmol})$. The reaction mixture was heated at reflux for 5 h with Dean-Stark. After cooling to room temperature, the Dean-Stark was removed and acetyl chloride ($2.7 \mathrm{~mL}, 30.5 \mathrm{mmol}$) was added to the mixture. The reaction mixture was heated again at reflux for 3 h . The solvent was distilled off under reduced pressure and the residue was dissolved in 100 mL of EtOAc. The organic layers were washed with saturated aqueous NaHCO_{3} solution, dried over MgSO_{4}, concentrated, and purified by flash column chromatography (EtOAc / n-hexane $=1: 3$) to afford 6 ($3.1 \mathrm{~g}, 75 \%$) as a white solid: $\mathrm{mp} 128-130^{\circ} \mathrm{C}$; MS m / z : $266\left(\mathrm{M}^{+}\right)$; IR (KBr) 3018, 1790, 1712, $1578 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{dd}, J=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C2-H), 7.63 (dd, $J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H}$), $7.35-$ $7.19(\mathrm{~m}, 4 \mathrm{H}$, pyridine C3-H, phenyl), $7.06(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, 2 H , phenyl), $3.92\left(\mathrm{~s}, 2 \mathrm{H}\right.$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 2.72(\mathrm{~m}, 2 \mathrm{H}$, $2 \times-\mathrm{N}-\mathrm{CO}-\mathrm{CH}_{\mathrm{a}}-$), $2.52\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times-\mathrm{N}-\mathrm{CO}-\mathrm{CH}_{\mathrm{b}}-\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.7,148.4,145.7,140.5,138.3,135.1$, 129.1, 127.3, 127.2, 125.1, 37.8, 28.9.

Preparation of $\mathbf{6 b}$. The reaction of $\mathbf{5 a}(400 \mathrm{mg}, 2.2$ mmol) and glutaric anhydride ($374 \mathrm{mg}, 3.3 \mathrm{mmol}$) afforded $\mathbf{6 b}(233 \mathrm{mg}, 38 \%)$ as a white solid according to the pro-
cedure described above: mp 102-103 ${ }^{\circ} \mathrm{C}$; MS m/z: $280\left(\mathrm{M}^{+}\right)$; IR (KBr) 3395, 2917, 1735, 1686, $1434 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H})$, 7.53 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), 7.32-7.23 (m, 5H, phenyl), $7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C3-H), $3.82(\mathrm{~s}, 2 \mathrm{H}$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 2.81-2.55\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\right), 2.12-1.94$
 178.0, 153.9, 152.7, 144.7, 144.3, 140.4, 134.7, 134.4, 133.9, 131.9, 129.8, 41.3, 37.5, 22.4.

Preparation of $\mathbf{6 c}$. Prepared from $5 \mathbf{5 a}(1.64 \mathrm{~g}, 8.9 \mathrm{mmol})$ and diglycolic anhydride ($1.56 \mathrm{~g}, 13.4 \mathrm{mmol}$) as described above. A yellow oil ($1.05 \mathrm{~g}, 41 \%$): MS m/z: $282\left(\mathrm{M}^{+}\right)$; IR (KBr) 3425, 2924, 1696, $1581 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}), 7.62(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H}), 7.37-7.13(\mathrm{~m}, 5 \mathrm{H}$, phenyl), $7.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C3-H), 4.41 and $4.31(\mathrm{ABq}$, $J=16.5 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine $\left.-\mathrm{CH}_{2}-\mathrm{Ar}\right), 3.87(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{O}=\mathrm{C}-$ $\mathrm{CH}_{2}-\mathrm{O}-$) ; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,156.4,148.1$, 140.1, 139.1, 129.6, 129.1, 128.9, 127.1, 125.5, 67.5, 36.3.

Preparation of 6d. Prepared from 5a ($600 \mathrm{mg}, 3.3 \mathrm{mmol}$) and thiodiglycolic anhydride ($737 \mathrm{mg}, 4.9 \mathrm{mmol}$)) as described above. A brown solid ($461 \mathrm{mg}, 47 \%$): mp 83-87 ${ }^{\circ} \mathrm{C}$; MS m/z: $298\left(\mathrm{M}^{+}\right)$; IR (KBr) 3395, 2924, 2388, 1730, $1686 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{dd}, J=4.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}$), $7.53(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), $7.32-7.23(\mathrm{~m}, 5 \mathrm{H}$, phenyl), $7.13(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 3-\mathrm{H}$), $3.83\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{S}-\right.$), 3.67 and $3.48\left(\mathrm{ABq}, J=16.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, pyridine- $\left.\overline{\mathrm{C}}_{2}-\mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,148.3,148.2,140.0,138.2$, 135.4, 129.7, 129.0, 127.2, 125.0, 37.1, 32.7.

Preparation of 6f. Prepared from $5 \mathrm{bb}(2.76 \mathrm{~g}, 14.5 \mathrm{mmol})$ and glutaric anhydride ($2.48 \mathrm{~g}, 21.8 \mathrm{mmol}$) as described above. A yellow oil ($2.90 \mathrm{~g}, 70 \%$): MS $m / z: 286\left(\mathrm{M}^{+}\right)$; IR (KBr) 3405, 2926, 1734, 1686, $1581 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{dd}, J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C3$\mathrm{H}), 7.71(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H}), 7.39(\mathrm{dd}, J=$ $7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C $3-\mathrm{H}), 7.18(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl C3-H), $6.94(\mathrm{dd}, J=5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl C4-H), $6.76(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl C5-H), $4.01(\mathrm{~s}, 2 \mathrm{H}$, pyridine-$\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 2.83-2.70\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\right), 2.15-1.95(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$).

General procedure for the preparation of hydroxylactams ($\mathbf{7 a - c}$). To a stirred solution of $\mathbf{6 a}(3.1 \mathrm{~g}, 11.4 \mathrm{mmol})$ in 40 mL of THF was added DIBAL-H (1 M in THF solution, $22.9 \mathrm{~mL}, 22.9 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$. After quenching with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, the reaction mixture was filtered through a pad of Celite 545 and the filtrate was extracted with EtOAc. The combined extract was dried over MgSO_{4}, concentrated and purified with column chromatography (EtOAc / n-hexane $=5: 1$) to afford 7a (2.15 $\mathrm{g}, 68 \%$) as a pale yellow oil: $\mathrm{IR}(\mathrm{KBr}) 3376,2928,1704$, $1578,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}$), 7.55 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H}$), $7.24-7.14(\mathrm{~m}, 4 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}$, phenyl), $7.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, phenyl), 5.26 and $3.95(\mathrm{ABq}, J=$ $16.3 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine- $\left.\underline{\mathrm{H}}_{2}-\mathrm{Ar}\right), 2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2^{-}}\right.$
$\mathrm{CH}_{\mathrm{a}}-$), $2.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{\mathrm{b}^{-}}\right), 1.87\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{\mathrm{a}}{ }^{-}\right.$ $\left.\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{OH}\right), 1.70\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{\mathrm{b}}-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{OH}\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.0,151.0,146.2,145.9,140.6,139.6$, 133.3, 128.7, 126.7, 122.8, 85.6, 38.2, 29.6, 27.4.

Preparation of 7b and 8b. Prepared from 6b ($197 \mathrm{mg}, 0.7$ $\mathrm{mmol})$ as described above: $\mathbf{7 b}(29 \mathrm{mg}, 15 \%)$ as a yellow solid; mp 94-95 ${ }^{\circ} \mathrm{C}$; IR (KBr) 3335, 2947, 2366, $1624 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}$), 7.51 (dd, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-$ H), 7.24-7.10 (m, 5H, phenyl), $6.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C3-H), $4.77\left(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\right)$ 3.90 and $3.79\left(\mathrm{ABq}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right)$, 2.46 (dd, $J=11.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CHa}$), $2.27-2.21$ (m , $2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), $1.72(\mathrm{dd}, J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-$ $\left.\mathrm{CH}_{\mathrm{b}}-\right), 1.57\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{\mathrm{a}}-\right), 1.01(\mathrm{~m}, 1 \mathrm{H},-\mathrm{N}-$ $\left.\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,155.1$, $146.4,140.6,140.0,134.2,129.0,128.8,126.9,123.3,82.2$, 38.6, $33.1,28.5,16.6$. 8b (over-reduced product, 59 mg , 30%) as a yellow solid; $\mathrm{mp} 104{ }^{\circ} \mathrm{C}$; IR (KBr) 3334, 3186, 2937, 1722, $1656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18$ (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C2-H), $7.46(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), 7.28-7.21 (m, 5H, phenyl), $7.10(\mathrm{t}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 3-\mathrm{H}), 4.00\left(\mathrm{~s}, 2 \mathrm{H}\right.$, pyridine $\left.-\mathrm{CH}_{2}-\mathrm{Ar}\right), 3.58$ $\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\right) 2.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), $1.80-1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HO}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right.$), 1.61$1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 173.4,149.8,146.2,140.2$ 139.3, 129.5, 129.0, 126.9, $122.3,62.2,37.9,36.3,32.336,22.041397,174.0,151.0$, $146.2,145.9,140.6,139.6,133.3,128.7,126.7,122.8,85.6$, 38.2, 29.6, 27.4.

Preparation of $7 \mathbf{c}$ and $8 \mathbf{8 c}$. Prepared from $\mathbf{6 c}(1.05 \mathrm{~g}, 3.7$ $\mathrm{mmol})$ as described above: $7 \mathrm{c}(211 \mathrm{mg}, 20 \%)$ as a white solid; mp 129-131 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 3274,2972,1654,1572 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}$), $7.68(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H})$, $7.31-7.20(\mathrm{~m}, 5 \mathrm{H}$, phenyl), $7.02(\mathrm{~s}, 1 \mathrm{H}$, pyridine C3-H), 5.96 (s, $\left.1 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\right) 4.31(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-$ $\left.\mathrm{CH}_{\mathrm{a}}-\mathrm{O}-\right)$, 4.13-3.91 (m, $3 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{\mathrm{b}}-\mathrm{O}-,-\mathrm{N}-\mathrm{CH}(\mathrm{OH})-$ $\left.\mathrm{C}_{2}-\right), 3.76$ and $2.86\left(\mathrm{ABq}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}\right.$, pyridine $-\mathrm{CH}_{2}-$ $\mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.5,146.6,141.1$, 139.7, 134.1, 129.0, 128.0, 127.1, 123.7, 103.3, 80.0, 67.9, $67.4,31.1$. 8c (over-reduced product, $140 \mathrm{mg}, 13 \%$) as a brown oil; IR (KBr) 3385, 2960, 2368, 1748, 1700, 1584 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.81$ (br, $1 \mathrm{H},-\mathrm{NH}$), 8.37 (d, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C2-H), 7.48 (d, $J=7.7 \mathrm{~Hz}$, 1 H , pyridine $\mathrm{C} 4-\mathrm{H}$), 7.31-7.22 (m, 5 H , phenyl), 7.13 (d, $J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 3-\mathrm{H}$), 4.20 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{O}-$), $4.10\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right), 4.02\left(-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$ 3.97 and $3.95\left(\mathrm{ABq}, \bar{J}=8.1 \mathrm{~Hz}\right.$, pyridine- $\left.\mathrm{CH}_{2}-\overline{\mathrm{Ar}}\right)$.

Preparation of $7 \mathbf{d}$ and $8 \mathbf{d}$. Prepared from $\mathbf{6 d}(208 \mathrm{mg}$, 0.7 mmol) as described above: hydroxylactam $7 \mathbf{d}(41 \mathrm{mg}$, 20\%) as a colorless oil; IR (KBr) 2924, 2362, 1730, 1646, $1581 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}$), 7.68 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), 7.35-7.05 (m, 5H, phenyl), 7.02 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 3-\mathrm{H}), 5.02\left(\mathrm{t}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}-\right)$, 3.97 and $3.90\left(\mathrm{ABq}, J=14.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right)$,
3.38 (s, 2H, O=C-CH 2_{2}), 2.69 (dd, $J=13.7,2.7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{S}-$ $\mathrm{CH}_{\mathrm{a}}-\mathrm{CH}-\mathrm{OH}$), 2.31 (dd, $J=13.7,2.8 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{S}-\mathrm{CH}_{b}-\mathrm{CH}-$ $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.0,146.3,140.5,139.3$, 133.9, 129.6, 128.7, 128.4, 123.4, 81.2, 38.1, 30.5, 29.6. 8d (over-reduced product, $62 \mathrm{mg}, 30 \%$) as a brown oil; IR (KBr) 3246, 2924, 1730, 1672, $1591 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H})$, $7.51(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), 7.33-7.16 (m, 5 H , phenyl), $7.12(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 3-\mathrm{H}), 4.03(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{S}\right), 3.76\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$, $3.39\left(\mathrm{~s}, 2 \mathrm{H}\right.$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 2.78(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{S}-$ $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}\right)$.

General procedure for the conversion of hydroxyamides (8d, 8f) to hydroxylactams (7d, 7f). A solution of over-reduced product, hydroxyamide $\mathbf{8 d}(100 \mathrm{mg}, 0.3$ mmol) in 10 mL of distilled DMSO was treated with triethylamine ($0.276 \mathrm{~mL}, 1.98 \mathrm{mmol}$) and the mixture was stirred for 40 min at room temperature. A solution of pyridine- SO_{3} complex ($158 \mathrm{mg}, 0.99 \mathrm{mmol}$) in 10 mL of DMSO was added into the above mixture. The reaction mixture was stirred for 2 h at room temperature and treated with a mixture of water and EtOAc. The organic layer was separated, dried over MgSO_{4} and concentrated under reduced pressure. The resultant residue was purified with column chromatography (EtOAc / n-hexane $=2: 1$) to provide $7 \mathbf{d}$ (68 $\mathrm{mg}, 69 \%$) as a colorless oil.

Preparation of 7f. The reaction of $\mathbf{6 f}(263 \mathrm{mg}, 0.9 \mathrm{mmol})$ as described above afforded hydroxyamide $\mathbf{8 f}$ ($88 \mathrm{mg}, 33 \%$) as a white solid; $\mathrm{mp} 88^{\circ} \mathrm{C}$; IR (KBr) 3348, 3238, 2898, $1660,1586,1518 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.25$ (dd, $J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C2-H), 7.57 (dd, $J=7.6$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H}$), $7.18-7.12(\mathrm{~m}, 2 \mathrm{H}$, thienyl C3,5H) $6.94(\mathrm{dd}, J=5.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl C4-H), $6.81(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 3-\mathrm{H}), 4.18\left(\mathrm{~s}, 2 \mathrm{H}\right.$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right)$, $3.61\left(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\right), 2.46(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $-\mathrm{CH}_{2}-\mathrm{OH}$), 1.81-1.57 (m, 4H, O=C-CH2 $\mathrm{CH}_{2}-\mathrm{CH}_{2}$). Compound $\mathbf{8 f}$ was converted into hydroxylactam $\overline{7 f}$ as a yellow oil in 74% yield by the above Parikh oxidation reaction: IR (KBr) 3435, 2926, 2362, 1666, $1631 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{dd}, J=4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}), 7.62$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H}$, thienyl C3-H), 7.12 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl C5-H), 6.91 (dd, $J=5.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl C4-H), $6.73(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, 1 H , pyridine $\mathrm{C} 3-\mathrm{H}), 5.03(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}-\mathrm{OH})$, 4.19 and $3.96\left(\mathrm{ABq}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, pyridine $\left.-\mathrm{CH}_{2}-\mathrm{Ar}\right)$, 2.54-2.36 (m, 2H, O=C-CH2-), 1.93-1.70 (m, 2H, O=C-CH2-$\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), 1.42-1.33 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$).
General procedure for N -acyliminium ion cyclization (9a-d, 9f). The reaction mixture of $\mathbf{7 a}(115 \mathrm{mg}, 0.43 \mathrm{mmol})$ and 1 mL of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was stirred for 2 h at room temperature and treated with aqueous NaHCO_{3} solution. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over MgSO_{4}, concentrated and purified with column chromatography (EtOAc / n-hexane $=5$: 1) to provide $9 \mathrm{a}(48 \mathrm{mg}, 45 \%)$ as a yellow solid: mp 175$176{ }^{\circ} \mathrm{C}$; IR (KBr) $3395,2368,1706,1586 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{dd}, J=4.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine

C2-H), $7.65(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H}), 7.26-7.15$ (m, 4 H , phenyl), $7.10(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 3-\mathrm{H}$), 5.17 (dd, $J=9.4,6.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}-\mathrm{Ar}-$), 4.46 and 3.50 ($\mathrm{ABq}, J=14.3 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 2.73-2.61(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{\mathrm{a}}-\right), 2.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\right.$ $\mathrm{CH}_{\mathrm{b}}-$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \overline{\mathrm{CDCl}}_{3}$) $\delta 175.5,148.5,138.5$, $137.1,134.7,130.4,128.2,127.9,123.7,118.2,111.9$, 111.7, 62.3, 38.1, 31.4, 31.2.

Preparation of 9b. Prepared from 7b ($29 \mathrm{mg}, 0.10 \mathrm{mmol}$) as described above: 9b ($16 \mathrm{mg}, 60 \%$) as a white solid; mp 134-137 ${ }^{\circ} \mathrm{C}$; MS m/z: $264\left(\mathrm{M}^{+}\right)$; IR (KBr) 3415, 2927, 2378, $1668,1586 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}$), 7.61 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), 7.18-7.08 (m, 5H, pyridine C3-H, phenyl), 5.06 (t, J $=5.1 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{C} \underline{\mathrm{H}}-\mathrm{Ar}-) 4.52$ and $3.42(\mathrm{ABq}, J=14.3 \mathrm{~Hz}$, 2 H , pyridine- $\mathrm{CH}_{2}-\overline{\mathrm{Ar}}$), 2.75-2.59 (m, $2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$), 2.44-2.16 (m, $\left.2 \mathrm{H}, \mathrm{O}=\mathrm{C}_{-} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\right), 2.03-1.85(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N}-$ $\mathrm{CH}-\mathrm{CH}_{2}-$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \overline{\mathrm{CDCl}}_{3}$) $\delta 171.0,148.5,148.3$, 139.0, 136.8, 136.4, 136.2, 130.2, 128.4, 127.5, 127.4, 123.8, 61.2, 38.2, 33.4, 33.0, 19.3.

Preparation of 9c. Prepared from $7 \mathrm{c}(39 \mathrm{mg}, 0.14 \mathrm{mmol})$ as described above: 9c ($23 \mathrm{mg}, 63 \%$) as a white solid: mp 209-211 ${ }^{\circ} \mathrm{C}$; MS m/z: $266\left(\mathrm{M}^{+}\right)$; IR (KBr) 3408, 2388, 1664, $1578 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}), 7.65(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), 7.26-7.16 (m, 4H, phenyl), 7.06 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C3-H), 5.28 (dd, $J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}-\mathrm{Ar}$-) 4.56 and $3.45\left(\mathrm{ABq}, J=14.2 \mathrm{~Hz}, 2 \mathrm{H}\right.$, pyridine $\left.-\mathrm{CH}_{2}-\mathrm{Ar}\right)$, 4.54 and $4.39\left(\mathrm{ABq}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\right), 4.24(\mathrm{dd}$, $\left.J=12.2,4.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{Ar})-\mathrm{CH}_{\mathrm{a}}-\right), 3.93$ (dd, $J=12.2$, $\left.9.0 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{Ar})-\mathrm{CH}_{\mathrm{b}}-\right) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 167.8,151.0,148.7,137.3,136.7,133.4,130.4,129.0$, $128.4,127.9,124.4,71.2,69.1,60.6,37.9$.
Preparation of 9d. Prepared from 7d ($80 \mathrm{mg}, 0.27 \mathrm{mmol}$) as described above: $9 \mathrm{~d}(56 \mathrm{mg}, 70 \%)$ as a white solid; mp $109-110^{\circ} \mathrm{C}$; MS m/z: $282\left(\mathrm{M}^{+}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{dd}, J=8.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}), 8.20(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), 7.61 (dd, $J=13.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl C3-H), 7.31-7.19 (m, 5H, phenyl) $5.53(\mathrm{t}, J=6.0 \mathrm{~Hz}$, $1 \mathrm{H},-\mathrm{N}-\mathrm{CH}-\mathrm{Ar}-) 4.61$ and $3.71(\mathrm{ABq}, J=14.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}=\mathrm{C}-$ $\left.\mathrm{CH}_{2}-\mathrm{S}-\right), 4.12$ and $3.47(\mathrm{ABq}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine-$\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 3.36\left(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{Ar})-\mathrm{CH}_{2}-\right)$.
Preparation of 9f. Prepared from $7 \mathbf{7 f}(94 \mathrm{mg}, 0.33 \mathrm{mmol})$ and methanesulfonic acid ($0.211 \mathrm{~mL}, 3.26 \mathrm{mmol}$) as described above: $9 \mathrm{f}(27 \mathrm{mg}, 31 \%)$ as a white solid: mp 195$197{ }^{\circ} \mathrm{C}$; MS m/z: $270\left(\mathrm{M}^{+}\right)$; IR (KBr) 3405, 2926, 2857, $1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.48(\mathrm{dd}, J=5.0$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}), 7.64(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}$, pyridine C3-H), $7.05(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl C5-H), $6.77(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl $\mathrm{C} 4-\mathrm{H}), 4.91(\mathrm{~s}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}-\mathrm{Ar}), 4.36$ and $3.63(\mathrm{ABq}, J=$ $16.2 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right)$, 2.63-2.57 (m, $2 \mathrm{H}, \mathrm{O}=\mathrm{C}-$ $\mathrm{CH}_{2}-$), 2.43-2.34 (m, $2 \mathrm{H},-\mathrm{N}-\mathrm{CH}(\mathrm{Ar})-\mathrm{CH}_{2}-$), 1.92-1.76 (m, $2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$).

General procedure for the preparation of pyridoazepines (4a-d, 4f). To a solution of $\mathbf{9 a}(67 \mathrm{mg}, 0.27 \mathrm{mmol})$ in 10 mL of THF was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ solution (1 M
solution in THF, $0.47 \mathrm{~mL}, 0.47 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 30 min at and treated with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ (2 M solution in THF, $0.2 \mathrm{~mL}, 0.4 \mathrm{mmol}$). After stirring for 3 h at room temperature, the reaction mixture was treated with 1 N HCl solution followed by an addition of mixture of water and EtOAc. The separated organic layer was dried over MgSO_{4}, concentrated and purified with column chromatography $(\mathrm{EtOAc} / n$-hexane $=1: 5$) to afford $\mathbf{4 a}$ (37 $\mathrm{mg}, 60 \%$) as a white solid: $\mathrm{mp} 113-115^{\circ} \mathrm{C}$; MS $\mathrm{m} / \mathrm{z}: 236$ (${ }^{+}$); IR (KBr) 2952, 2856, 1588, $1456 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{dd}, J=4.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-$ $\mathrm{H})$, 7.32-7.25 (m, 4H, pyridine C4-H, phenyl), 7.17 (d, $J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}$, phenyl) $6.40(\mathrm{dd}, J=7.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C3-H), $5.60(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}$-phenyl), 4.89 and 3.38 (ABq, $J=14.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}$-phenyl), 3.71 (t, $J=6.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\right), 2.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}-\mathrm{CH}_{-}-\right), 2.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-$ $\left.\mathrm{CH}-\mathrm{CH}_{\mathrm{b}}-\right), 2.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 146.7,139.9,138.0,136.6,128.3,128.0,127.3$, 123.7, 123.7, 118.2, 111.9, 111.7, 57.8, 49.6, 39.8, 30.1, 23.6.

Preparation of 4b. Prepared from 9b $(84 \mathrm{mg}, 0.317$ mmol) as described above: $\mathbf{4 b}$ ($64 \mathrm{mg}, 80 \%$) as a white solid; mp $80{ }^{\circ} \mathrm{C}$; MS m/z: $250\left(\mathrm{M}^{+}\right.$); IR (KBr) 3425, 2924, $2827,2378,1586 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.14$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C2-H), 7.28 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), 7.12-6.98 (m, 4H, phenyl), 6.68 (dd, $J=7.1$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 3-\mathrm{H}), 4.55$ and $3.34(\mathrm{ABq}, J=13.1$ $\mathrm{Hz}, 2 \mathrm{H}$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 4.12(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-$ $\left.\mathrm{CH}_{\mathrm{a}}-\mathrm{CH}_{2}-\right), 3.96\left(\mathrm{~d}, \bar{J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{\mathrm{b}}-\mathrm{CH}_{2}-\right), 3.13(\mathrm{t}$, $\left.J=12.1 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H},-\mathrm{N}-$ $\left.\mathrm{CH}(\mathrm{Ar})-\mathrm{CH}_{2}-\right), 1.85-1.67\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4,146.2,140.4,138.0,134.2$, 132.5, 129.7, 127.9, 127.2, 116.8, 116.6, 67.8, 51.1, 38.6, 38.5, 38.3, 26.8.

Preparation of $4 \mathbf{c}$. Prepared from $9 \mathrm{c}(24 \mathrm{mg}, 0.09 \mathrm{mmol})$ as described above: $\mathbf{4 c}(10 \mathrm{mg}, 44 \%)$ as a white solid: mp

97-100 ${ }^{\circ} \mathrm{C}$; MS m/z: $252\left(\mathrm{M}^{+}\right)$; IR (KBr) 3415, 2976, 2857, $2366,1591 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}), 7.35(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 4-\mathrm{H}$), 7.18-7.10 (m, 4H, phenyl), $6.77(\mathrm{dd}, J=7.2$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 3-\mathrm{H}), 4.54$ and $3.49(\mathrm{ABq}, J=13.7$ $\mathrm{Hz}, 1 \mathrm{H}$, pyridine- $\left.\underline{\mathrm{H}}_{2}-\mathrm{Ar}\right), 4.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{C} \underline{H}-$ phenyl), 4.05 (dt, $J=11.0,2.7 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{\mathrm{a}}-\mathrm{O}-$), 3.89-3.80 (m, $\left.3 \mathrm{H},-\mathrm{N}^{2} \mathrm{CH}_{2}-\mathrm{CH}_{\mathrm{b}}-\mathrm{O}-\right)$; ${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 159.2,146.2,140.4,135.0,131.2,129.4,128.2$, 127.6, 127.0, 117.8, 116.6, 73.5, 67.6, 64.8, 49.0, 38.3.

Preparation of 4d. Prepared from 9d ($56 \mathrm{mg}, 0.20 \mathrm{mmol}$) as described above: $\mathbf{4 d}$ ($16 \mathrm{mg}, 30 \%$) as a yellow solid: mp $106{ }^{\circ} \mathrm{C}$; MS m/z: $268\left(\mathrm{M}^{+}\right)$; IR (KBr) 3415, 2917, 2837, 2366, 1725, $1574 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04$ (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C2-H), 7.39 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), 7.23-7.12 (m, 5H, phenyl), 6.72 (dd, $J=7.0$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C3-H), $4.50(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-$ $\mathrm{CH}-\mathrm{Ar}), 4.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{\mathrm{a}}\right), 4.35$ and $3.53(\mathrm{ABq}, J=13.2$ $\mathrm{Hz}, 2 \mathrm{H}$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 3.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{\mathrm{a}}\right), 2.90(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{\mathrm{a}}-\mathrm{CH}-\mathrm{Ph}\right), 2.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{S}-\mathrm{CH}_{\mathrm{b}}-\mathrm{CH}-\mathrm{Ph}\right), 2.44(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.5,140.4$, 139.2, 136.7, 136.6, 132.5, 129.5, 129.4, 129.2, 128.7, 128.3, 116.4, 68.5, 54.3, 38.4, 35.0, 27.9.

Preparation of 4f. Prepared from $9 f(30 \mathrm{mg}, 0.11 \mathrm{mmol})$ as described above: $\mathbf{4 f}(5 \mathrm{mg}, 21 \%)$ as a yellow solid; mp $108-111^{\circ} \mathrm{C}$; MS m/z: $256\left(\mathrm{M}^{+}\right)$; IR (KBr) 3420, 2930, 2840, $1578,1432 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21(\mathrm{~d}, J=$ $4.9 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine $\mathrm{C} 2-\mathrm{H}), 7.29(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C4-H), $6.89(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}$, thienyl C2-H), 6.75 (dd, $J=7.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}$, pyridine C3-H), $6.66(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, 1 H , thienyl C3-H), 4.47 and $3.40(\mathrm{ABq}, J=14.5 \mathrm{~Hz}, 2 \mathrm{H}$, pyridine- $\left.\mathrm{CH}_{2}-\mathrm{Ar}\right), 4.05(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}-\mathrm{Ar})$, $3.70\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{\mathrm{a}}-\mathrm{CH}_{2}-\right), 3.20\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{\mathrm{b}}-\mathrm{CH}_{2}-\right)$, 1.95-1.59 (m, 6H, -N-CH-CH2 $\underline{H}_{2} \underline{H}_{2}-\mathrm{CH}_{2}-$); ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.5,146.3,138.7,134.0,133.6,128.8$,

Scheme 1. ${ }^{a}$ Reagents: i) succinic anhydride ($\mathrm{n}=0$), glutaric anhydride ($\mathrm{n}=1$), diglycolic anhydride ($\mathrm{n}=1, \mathrm{X}=\mathrm{O}$), thiodiglycolic acid ($\mathrm{n}=1$, $\mathrm{X}=\mathrm{S}$), AcCl , xylene, reflux; ii) DIBAL-H, THF, $-78{ }^{\circ} \mathrm{C}$; iii) conc. $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathbf{7 a}-\mathbf{d})$ or $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}(\mathbf{7 e - f}, \mathbf{7 h})$, rt; iv) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, THF, rt.
121.2, 117.6, 117.4, 64.1, 51.7, 37.5, 31.5, 26.5, 25.7.

Results and Discussion

As shown in Scheme 1, our basic strategy utilizes the N acyliminium ion cyclization of hydroxylactam 7a-h with aromatic ring as π-nucleophile under the acidic condition. ${ }^{6}$ As a first step, 2-amino-3-phenylmethylpyridines (5a) and 2-amino-3-thienylmethylpyridine ($\mathbf{5 b}$), which were prepared by known procedure, ${ }^{7}$ were condensed with various anhydrides or dicarboxylic acids to afford the cyclic imides $\mathbf{6 a - h}$ in moderate to good yields ($38-75 \%$). The results of all reactions were summarized in Table 1.
In case of the reduction of cyclic imides to hydroxylactams with NaBH_{4}, the hydroxyamides $\mathbf{8}$, over-reduced compounds, were obtained predominantly instead of the desired hydroxylactams consistent with our previous results. ${ }^{5}$ Other reducing agents such as Red-Al and bis(2,6 -dimethoxyphenoxy)borane (BDMPB) also gave the side-products. ${ }^{8}$ On the other hand, the reduction of cyclic imides $\mathbf{6 a - h}$ with

Table 1. Structures and yields of each reaction in Scheme 1

Entry	Ar	n	X	Yield of $\mathbf{6}$ $(\%)^{a}$	Yield of $\mathbf{9}$ $(\%)^{a}$	Yield of $\mathbf{4}$ $(\%)^{a}$
\mathbf{a}	Phenyl	0	CH_{2}	75	45	60
\mathbf{b}	Phenyl	1	CH_{2}	38	60	80
\mathbf{c}	Phenyl	1	O	41	63	44
\mathbf{d}	Phenyl	1	S	47	70	30
\mathbf{e}	2-Thienyl	0	CH_{2}	63	decom. b	-
\mathbf{f}	2-Thienyl	1	CH_{2}	70	31^{b}	31
\mathbf{g}	2-Thienyl	1	O	52	-	-
\mathbf{h}	2-Thienyl	1	S	60	decom. b	-

${ }^{a}$ Isolated yield. ${ }^{b} \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ was used for cyclization instead of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Table 2. Reduction of cyclic imides ($\mathbf{6 a - h}$) and Parikh oxidation of the corresponding over-reduced compounds ($\mathbf{8 d}, \mathbf{8 f}$, and $\mathbf{8 h}$) to hydroxylactams (7a, 7f, and 7h)

[^0] oxidation). ${ }^{d}$ Not tried.

DIBAL-H provided hydroxylactams 7 along with hydroxyamides ($\mathbf{8}$) in various ratios depending on the substrates. 2Thienyl derivatives $\mathbf{6 f}$-h were, however, transformed to hydroxyamides 8f-h. Fortunately, these over-reduced compounds $\mathbf{8 d}, \mathbf{8 f}$ and $\mathbf{8 h}$ could be cleanly converted into the desired hydroxylactams in acceptable yield by Parikh oxidation (Pyr.- SO_{3} complex). ${ }^{9}$ The results of these reactions were summarized in Table 2.

The hydroxylactams 7a-f and 7h were subjected to the acidic condition of N -acyliminium ion cyclization to obtain tetracyclic ring system. The hydroxylactams 7a-d, which have a phenyl ring as a π-nucleophile were cyclized smoothly on treatment of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to afford the cyclized products in $45-70 \%$ yields. However, the cyclization of hydroxylactams $\mathbf{7 e}$ and $\mathbf{7 h}$, which have a thienyl ring as a π nucleophile, did not take place on the various N-acyliminium ion cyclization conditions. The hydroxylactam $7 \mathbf{f}$ was only cyclized successfully on treatment of $\mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}$ as an activator to afford the cyclized product 9 f in 31% yield. ${ }^{10}$ This may due to the instability of thienyl ring on the vigorous acidic cyclization conditions. Finally, the reduction of lactam carbonyl group in 9 a-d and $\mathbf{9 f}$ with $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$ in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ provided tetracyclic pyrido[2,3-b]azepines $\mathbf{4 a - d}$, and $\mathbf{4 f}$ in 31-80\% yields, respectively.
For the evaluation of biological effect of synthetic compounds as well as our previously reported compounds, ${ }^{5}$ the binding assay for α_{2}-adrenoceptor was performed according to the previously reported method and summarized in Table

Table 3. The binding affinity of synthetic compounds for α_{2} adrenoceptor
(3a)
3. ${ }^{11}$ The binding affinity data of mirtazapine (2) was also inserted for activity comparison. In general, tetracyclic azepins $\mathbf{3 a}, \mathbf{3 c}$, and $\mathbf{4 a}$, which have a five-membered pyrrolidine ring showed better binding affinities than other tetracyclic azepines having a six-membered piperidine, morpholine or thiomorpholine ring. Among tested compounds, 2,3,9,13b-tetrahydro$1 H$-benzo f] pyrrolo[2,1-a]pyrido[2,3-c]azepine (4a) was the most potent ($\mathrm{Ki}=0.26 \mu \mathrm{M}$) but showed about 3-fold less binding affinity than mirtazapine (2) $(K i=0.08 \mu \mathrm{M})$ for α_{2} adrenoceptor. On the other hand, tetracyclic azepines having a six-membered ring showed no noticeable binding affinities except compound $\mathbf{4 f}(\mathrm{Ki}=2.73 \mu \mathrm{M})$.

In conclusion, tetracyclic pyrido[2,3-b]azepine derivatives (4a-d and 4f) were successfully synthesized as analogues of mirtazapine through N -acyliminium ion cyclization strategy starting from 2-amino-3-arylmethylpyrines 5a and 5b. The key intermediates, hydroxylactams 7, were prepared by reduction of the corresponding imides with only DIBAL-H followed by Parikh oxidation of the resulting over-reduced compounds 8 . The α_{2}-adrenoceptor binding affinity data of synthetic compounds showed that 4-methyl group of piperazine moiety of mirtazapine plays an important role for the binding affinity for α_{2}-adrenoceptor.

Acknowledgment. This work was supported by grants from The Ministry of Health and Welfare (2M10950).

References

1. (a) Roeder, T.; Degen, J.; Gewecke, M. Eur. J. Pharmacol. 1998, 349, 171-177. (b) Briel, D. Pharmazie. 1990, 45, 895-899.
2. (a) De Boer, T.; Nefkens, F.; Van Helvoirt, A. Eur. J. Pharmacol. 1994, 253, R5-R6. (b) De Boer, T.; Nefkens, F.; Van Helvoirt, A.; Van Delft, A. M. L. J. Pharmacol. Exp. Ther. 1996, 277, 852-860. (c) Haddjeri, N.; Blier, P.; De Montigny, C. J. Pharmacol. Exp. Ther. 1996, 277, 861-871.
3. (a) Nickolson, V. J.; Wieringa, J. H. J. Pharm. Pharmacol. 1981, 33, 760-766. (b) Wood, M. D.; Thomas, D. R. Watkins, C. J.; Newberry, N. R. J. Pharm. Pharmacol. 1993, 45, 711-714. (c) Pinder, R. M.; Van Delft, A. M. L. Br. J. Clin. Pharmacol. 1983, $15,269 \mathrm{~S}-276 \mathrm{~S}$.
4. (a) Berger, J. G.; Chang, W. K.; Clader, J. W.; Hou, D.; Chipken, R. E.; McPhail, A. T. J. Med. Chem. 1989, 32, 1913-1921. (b) Draper, R. W.; Hou, D.; Iyer, R.; Lee, G. M.; Liang, J. T.; Mas, J. L.; Tormos, W.; Vater, E. J.; Gunter, F.; Mergelsberg, I.; Scherer, D. Org. Process Res. Dev. 1998, 2, 175-185. (c) Reinhard, R.; Glaser, M.; Neumann, R.; Maas, G. J. Org. Chem. 1997, 62, 77447751. (d) McKenna, M. T.; Proctor, G. R.; Young, L. C.; Harvey, A. L. J. Med. Chem. 1997, 40, 3516-3523. (e) Lee, Y. S.; Min, B. J.; Park, Y. K.; Lee, J. Y.; Lee, S. J.; Park, H. Tetrahedron Lett. 1999, 40, 5569-5572.
5. Lee, J. Y.; Baek, N. J.; Lee, S. J.; Park, H.; Lee, Y. S. Heterocycles 2001, 55, 1519-1526.
6. (a) Kim, J. H.; Lee, Y. S.; Park, H.; Kim, C. S. Tetrahedron 1998, 54, 7395-7400. (b) Tanis, S. P.; Deaton, M. V.; Dixon, L. A.; McMills, M. C.; Raggon, J. W.; Collins, M. A. J. Org. Chem. 1998, 63, 6914-6928.
7. Kametani, S.; Surgenor, A.; Fukumoto, K. J. Chem. Soc. Perkin Trans. 1 1981, 920-925.
8. (a) Kang, J.; Lee, J. W.; Kim, J. I.; Pyun, C. Tetrahedron Lett. 1995, 36, 4265-4268. (b) Kang, J.; Lee, C. W.; Lim, G. J.; Cho, B. T. Tetrahedron: Asymmetry 1999, 10, 657-660.
9. Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 55055507.
10. Dijkink, J.; Speckamp, W. N. Tetrahedron 1978, 34, 173-178.
11. Chung, S.-H.; Yook, J.; Min, B. J.; Lee, J. Y.; Lee, Y. S.; Jin, C. Arch. Pharm. Res. 2000, 23, 353-359.

[^0]: $\overline{{ }^{a} \text { Isolated yield. }{ }^{b} \text { Isolated ratio of } 7 \text { and 8. }{ }^{c} \text { Combined yield (reduction and }}$

