Studies on the Total Synthesis of Amphidinolide 0. A Stereoselective Synthesis of C12-C17 Fragment

Jin-Hyun Pang and Duck-Hyung Lee*
Department of Chemistry, Sogang University, Shinsoo-dong 1, Mapo-ku, Seoul 121-742, Korea Received April 1, 2002

Key words : Amphidinolide O, Cytotoxic macrolide, Stereoselective synthesis, Diastereoselective anti-aldol reaction

The amphidinolides are a series of cytotoxic macrolides isolated from the marine dinoflagellate Amphidinium sp., which is a symbiotic with Okinawan marine flatworm Amphiscolops sp. Amphidinolide O (1) exhibited in vitro cytotoxicity against L1210 and human epidermoid carcinoma KB cells ($\mathrm{IC}_{50}: 1.7$ and $3.6 \mu \mathrm{~g} / \mathrm{mL}$, respectively). ${ }^{1}$ Several synthetic strategies for amphidinolide $\mathrm{A},{ }^{2} \mathrm{~B},{ }^{3} \mathrm{C},{ }^{4} \mathrm{G},{ }^{5}$ $\mathrm{H},{ }^{5}$ and $\mathrm{L}^{5,6}$ have been reported to date and the total synthesis of three amphidinolides, $\mathrm{J},{ }^{7} \mathrm{~K},{ }^{8}$ and P^{9} was recently completed by Williams group. Herein, we describe the stereoselective synthesis of the C12-C17 fragment 3 of amphidinolide $\mathrm{O}(\mathbf{1})$ using a titanium-mediated diastereoselective anti-aldol reaction as a key step.

Retrosynthetically, the amphidinolide O (1) can be bisected into two fragments: the $\mathrm{C} 1-\mathrm{C} 11$ fragment 2 bearing the epoxide and the hemiketal moieties and C12-C17 vinyl iodide fragment 3 (Scheme 1).

The synthesis of vinyl iodide fragment 3 started from chiral propionate ester 4 (Scheme 2). The ($1 S, 2 R$)-cis-1-(p -methyl)benzenesulfonamido-2-indanyl ester 4 was prepared in 2 steps from commercially available optically active $(1 S, 2 R)$-cis-aminoindan-2-ol. ${ }^{10}$ The titanium enolate of 4 was generated by the following sequence of reactions, i.e., treatment of $\mathbf{4}$ with TiCl_{4} (1.2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}-25$ ${ }^{\circ} \mathrm{C}$ for 15 min , addition of N -ethyldiisopropylamine (4.0 equiv.) at $25^{\circ} \mathrm{C}$, and finally stirring of the resulting dark brown solution for 2 hr .

The titanium enolate of 4 was then treated with 3-trimethylsilyl-2-propyn-1-al (5) (2.0 equiv.), ${ }^{11}$ which was already precomplexed with TiCl_{4} (2.4 equiv.) at $-78{ }^{\circ} \mathrm{C}$, to provide the anti-aldol product 6 as a major product in 55% isolated yield. ${ }^{10}$ TMS group of anti-aldol ester $\mathbf{6}$ was remov-

Scheme 1. Retrosynthetic Analysis of Amphidinolide O (1).

[^0]ed with tetra-n-butylammonium fluoride (1.5 equiv., 1.0 M in THF) in THF. ${ }^{12}$ The chiral auxiliary ester 7 was directly esterified with a solution of methyl magnesium chloride (6.0 equiv., 3.0 M in THF) in methanol. ${ }^{13}$ Hydrostannylation of acetylene $\mathbf{8}$ with tributyltin hydride (1.5 equiv.) and AIBN (cat.) followed by metal-halogen exchange with iodine (1.2 equiv.) in diethyl ether yielded the desired (E)-vinyl iodide 10 in 54% yield over 2 steps. ${ }^{14}$

The tertiary alcohol $\mathbf{1 2}$ was prepared from the iodide to $\mathbf{1 0}$ via a two-step sequence: PMB-protection ${ }^{15}$ of secondary alcohol 10 with 4-methoxybenzyl trichloroacetimidate (1.0 equiv.) and p-toluenesulfonic acid (cat.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / c$-hexane and then the addition of methyl magnesium chloride (3.0 equiv., 3.0 M in THF) in THF. Finally, dehydration with methanesulfonyl chloride (5.0 equiv.) and triethylamine (10.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ produced the target fragment $\mathbf{3}$ in 80% yield. ${ }^{17}$

Scheme 2. Reagents and reaction conditions: (a) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-$ $25{ }^{\circ} \mathrm{C}, 15 \mathrm{~min} ; i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{rt}, 1 \mathrm{hr} ; \mathbf{5}, \mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{hr}$, 55%; (b) TBAF, THF, rt, $2 \mathrm{hr}, 80 \%$; (c) $\mathrm{CH}_{3} \mathrm{MgCl}, \mathrm{MeOH}, \mathrm{rt}, 12$ $\mathrm{hr}, 78 \%$; (d) n - $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}, 85^{\circ} \mathrm{C}, 2 \mathrm{hr}, 68 \%$; (e) $\mathrm{I}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{rt}, 10$ $\min , 80 \%$; (f) PMB-TCA, TsOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{c}$-Hexane, rt, $12 \mathrm{hr}, 60 \%$; (g) $\mathrm{CH}_{3} \mathrm{MgCl}, \mathrm{THF}, \mathrm{rt}, 1 \mathrm{hr}, 70 \%$; (h) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-10^{\circ} \mathrm{C}$, $30 \mathrm{~min}, 80 \%$.

Scheme 3. Determination of relative stereochemistry of aldol product 6. (a) LiAlH_{4}, THF, $0^{\circ} \mathrm{C}, 1 \mathrm{hr}, 60 \%$; (b) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\left(\mathrm{OCH}_{3}\right)_{2}$, PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 12 \mathrm{hr}, 65 \%$.

In order to establish the relative stereochemistry, the antialdol product 6 was converted to the acetonide $\mathbf{1 3}$ by reduction with lithium aluminum hydride (2.5 equiv.) in THF at $0{ }^{\circ} \mathrm{C}$ followed by exposure of resulting diol to 2,2dimethoxypropane (10.0 equiv.) in the presence of a catalytic amount of pyridinium p-toluenesulfonate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Scheme 3). ${ }^{10 \mathrm{a}}$ The relative stereochemistry at C14-C15 was confirmed unambiguously by ${ }^{1} \mathrm{H}$ NOE difference spectroscopy $(1.83 \%$ enhancement of the 20-Me signal upon irradiation of H_{a}) and a coupling constant J_{ab} of 10.5 Hz , which suggests the anti configurational relationship in $6 .{ }^{10 \mathrm{a}, 16}$

In summary, we have achieved the stereoselective synthesis of C12-C17 fragment $\mathbf{3}$ from the chiral propionate ester $\mathbf{4}$ via 8 step sequences in 6.3% overall yield.

Experimental Section

3-Trimethylsilyl-2-propyn-1-al (5). Solid pyridinium chlorochromate ($1.85 \mathrm{~g}, 8.56 \mathrm{mmol}, 1.1$ equiv.) was added to a stirring solution of 3-trimethylsilyl-2-propyn-1-ol (1.0 g, $7.79 \mathrm{mmol}, 1.0$ equiv.) in dichloromethane (15 mL). Stirring continued in a sealed flask for 6 hr at room temperature. The solution was filtered through a pad of Celite, and the remaining black precipitant in the flask was rinsed with diethyl ether (50 mL) followed by filtration. The filtrates were combined and dried over anhydrous MgSO_{4}, filtered and concentrated to give aldehyde $\mathbf{5}$ as a brown oil in 50% yield $(0.49 \mathrm{~g})$. The crude aldehyde 5 was used without further purification. TLC $R_{f} 0.60(10 \% \mathrm{EtOAc}$ in hexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.22(\mathrm{~s}, 9 \mathrm{H}), 9.20(\mathrm{~s}, 1 \mathrm{H})$.
(1S,2R)-N-[2,3-Dihydro-2-((2S,3S)-3-hydroxy-2-methyl-5-trimethylsilyl-1-oxo-pent-4-ynoxy)-1H-inden-1-yl]-4methylbenzenesulfonamide (6). To a solution of propionate ester $4(1.0 \mathrm{~g}, 2.78 \mathrm{mmol}, 1.0$ equiv.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ was added 1 M solution of $\mathrm{TiCl}_{4}(3.33 \mathrm{~mL}$, $3.33 \mathrm{mmol}, 1.2$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise via syringe under N_{2} at $0{ }^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to room temperature and stirred for an additional 15 min. N-ethyldiisopropyl- amine $(1.94 \mathrm{~mL}, 11.22 \mathrm{mmol}$, 4.0 equiv.) was added to this solution dropwise at $25^{\circ} \mathrm{C}$ by syringe. The color of the solution became brown after stirring for an additional 1 hr at $25^{\circ} \mathrm{C}$. In a separate flask, to a stirred solution of aldehyde $5(706 \mathrm{mg}, 5.56 \mathrm{mmol}, 2.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(28 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, was added a 1 M solution of TiCl_{4} ($6.67 \mathrm{~mL}, 6.67 \mathrm{mmol}, 2.4$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$
for 5 min , the above enolate solution was added to the aldehyde 5 solution dropwise via cannula over a period of 5 min . The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 hr and then it was quenched by addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to afford a residue which was purified by silica gel chromatography ($20 \% \mathrm{EtOAc}$ in hexane) to yield the title aldol product 6 ($743 \mathrm{mg}, 55 \%$) as a white solid. TLC $R_{f} 0.50$ (33% EtOAc in hexane); m.p. $53-55{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}=-22.3$ (c 2.77, CHCl_{3}); IR (KBr pellet) 3479, 3283, 3049, 2958, 2921, $2224,1725,1336,1124 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 7.81 (d, 2H, $J=8 \mathrm{~Hz}$), 7.32-7.15 (m, 6H), 6.02 (d, 1H, $J=$ $10 \mathrm{~Hz}), 5.34(\mathrm{t}, 1 \mathrm{H}, J=5 \mathrm{~Hz}), 4.92-4.89(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.32$ $(\mathrm{m}, 1 \mathrm{H}), 3.10(\mathrm{dd}, 1 \mathrm{H}, J=5 \& 14 \mathrm{~Hz}), 2.93(\mathrm{~d}, 1 \mathrm{H}, J=6$ $\mathrm{Hz}), 2.89(\mathrm{~d}, 1 \mathrm{H}, J=17 \mathrm{~Hz}), 2.69-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}), 1.19(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7 \mathrm{~Hz}), 0.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 125 MHz) $\delta 172.3,143.6,139.8,138.4,137.8,129.8,128.5$, $127.4,127.1,124.4,103.3,91.8,74.9,64.6,59.7,47.0,37.2$, 21.5, 13.9, -0.3; GC/MS (m/z) calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{SSi}$ $\left(\mathrm{M}^{+}\right)$485.17, found 484.30; Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{SSi}$: C, 61.83; H, 6.43; N, 2.88. Found: C, 61.88; H, 6.47; N, 2.77.
(1S,2R)-N-[2,3-Dihydro-2-((2S,3S)-3-hydroxy-2-methyl-1-oxo-pent-4-ynoxy)-1 H -inden-1-yl]-4-methylbenzenesulfonamide (7). To a $0{ }^{\circ} \mathrm{C}$ solution of aldol product 6 (1.0 $\mathrm{g}, 2.05 \mathrm{mmol}, 1.0$ equiv.) in 10 mL THF was added a 1 M solution of tetra-n-butylammonium fluoride $(3.07 \mathrm{~mL}, 3.07$ mmol, 1.5 equiv.) in THF. The cooling bath was removed and the solution was stirred at room temp for 2 hr and then it was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over anhydrous MgSO_{4}, filtered and the solvent removed in vacuo. Column chromatography ($25 \% \mathrm{EtOAc}$ in hexane) gave $681 \mathrm{mg}(80 \%)$ of the title compound 7 as a white solid. TLC $R_{f} 0.50(50 \% \mathrm{EtOAc}$ in hexane); m.p. $140-142{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{27}=-13.9\left(c 0.42, \mathrm{CHCl}_{3}\right)$; IR (KBr pellet) $3511,3045,2974,2361,1718,1373,1164 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.82(\mathrm{~d}, 2 \mathrm{H}, J=8 \mathrm{~Hz}), 7.32-$ $7.16(\mathrm{~m}, 6 \mathrm{H}), 5.91(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}), 5.34(\mathrm{ddd}, 1 \mathrm{H}, J=$ $1.5,5 \& 5 \mathrm{~Hz}), 4.93-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.12$ $(\mathrm{dd}, 1 \mathrm{H}, J=5 \& 17 \mathrm{~Hz}), 3.01(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 2.92(\mathrm{~d}, 1 \mathrm{H}$, $J=17 \mathrm{~Hz}), 2.73-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 2.45$ (s, 3H), $1.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.21(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 172.2,143.7,139.7,138.4,137.7$, $129.8,128.5,127.4,127.1,124.9,124.4,82.0,75.2,74.7$, $63.9,59.7,46.8,37.3,21.5,13.8$; GC/MS (m/z) calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{M}^{+}\right) 413.13$, found 411.10; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 63.90$; H, 5.61; N, 3.39. Found: C, 63.95; H, 5.53; N, 3.35.

Methyl (2S,3S)-3-hydroxy-2-methyl-4-pentynoate (8). To a $0{ }^{\circ} \mathrm{C}$ solution of $400 \mathrm{mg}(0.96 \mathrm{mmol}, 1.0$ equiv.) of aldol product 7 in 4 mL of anhydrous methanol was added via cannula a suspension formed by the addition of 1.93 mL ($5.76 \mathrm{mmol}, 6.0$ equiv., 3.0 M in THF) of methyl
magnesium chloride to 4 mL of anhydrous methanol. After the reaction mixture was stirred at room temperature for 12 hr , it was quenched by the addition of 4 mL of pH 7 phosphate buffer. Volatiles were removed in vacuo. The residue was dissolved in 1.0 M aqueous hydrochloric acid, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. Purification by flash chromatography ($25 \% \mathrm{EtOAc}$ in hexane) afforded 107 mg (78%) of the title compound $\mathbf{8}$ as a colorless oil. TLC $R_{f} 0.35$ (33% EtOAc in hexane) ; $[\alpha]_{\mathrm{D}}^{27}=+21.0\left(c 0.65, \mathrm{CHCl}_{3}\right)$; IR (neat) $3456,2985,2117,1727,1459,1268 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.53$ (ddd, $\left.1 \mathrm{H}, J=2,7 \& 7 \mathrm{~Hz}\right), 3.74$ (s, $3 \mathrm{H}), 2.94(\mathrm{~d}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}), 2.79-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~d}$, $1 \mathrm{H}, J=2 \mathrm{~Hz}), 1.31(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 174.93,82.41,74.1,64.1,52.0,45.9,13.8$; GC/MS $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{O}_{3}\left(\mathrm{M}^{+}\right) 142.06$, found 142.97 .

Methyl (2S,3S)-3-hydroxy-2-methyl-5-tributylstannanyl-(4E)-pentenoate (9). Acetylene 8 ($200 \mathrm{mg}, 1.41 \mathrm{mmol}, 1.0$ equiv.), $n-\mathrm{Bu}_{3} \mathrm{SnH}$ ($0.57 \mathrm{~mL}, 2.11 \mathrm{mmol}, 1.5$ equiv.), and AlBN ($12 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.05$ equiv.) were stirred under nitrogen at $85^{\circ} \mathrm{C}$ for 2 hr . The reaction mixture was cooled to room temperature. Purification by column chromatography ($10 \% \mathrm{EtOAc}$ in hexane) afforded 414 mg (68%) of the title compound 9 as a colorless oil. TLC $R_{f} 0.23$ ($10 \% \mathrm{EtOAc}$ in hexane); $[\alpha]_{\mathrm{D}}^{27}=+6.5$ (c 0.67, CHCl_{3}); IR (neat) 3494, 2956, 2852, 1726, 1459, $1375 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 6.26(\mathrm{~d}, 1 \mathrm{H}, J=19 \mathrm{~Hz}), 5.98(\mathrm{dd}, 1 \mathrm{H}, J=6 \& 19$ $\mathrm{Hz}), 4.17-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 6 \mathrm{H})$, $1.33-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.18(\mathrm{~d}, 3 \mathrm{H}, J=6 \mathrm{~Hz}), 0.91-0.87(\mathrm{~m}$, $15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 175.9,147.5,131.1$, 77.2, 51.7, 45.1, 29.1, 29.0, 28.9, 27.4, 27.2, 27.0, 14.1, 13.7, 10.9, 10.8, 9.5, 8.2, 8.1; GC/MS (m/z) calcd. for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Sn}$ $\left(\mathrm{M}^{+}\right) 432.18$, found 435.25; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Sn}$: C, 52.68; H, 8.84. Found: C, 52.56; H, 8.85.

Methyl (2S,3S)-5-iodo-3-hydroxy-2-methyl-(4E)-pentenoate (10). A solution of iodine ($70 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.2$ equiv.) in dry ether (2 mL) was added dropwise via cannula over a period of 1 min to a cold $\left(0^{\circ} \mathrm{C}\right)$, stirred solution of vinyl stannane 9 ($100 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0$ equiv.) in the same solvent $(2 \mathrm{~mL})$. The reaction mixture was stirred an additional 10 min at room temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The organic phase was washed with brine, dried over anhydrous MgSO_{4}, filtered and concentrated in vacuo. Purification by column chromatography (20% EtOAc in hexane) afforded 414 mg (68%) of the title compound $\mathbf{1 0}$ as a white solid. TLC $R_{f} 0.27$ (20\% EtOAc in hexane); m.p. $36-38{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{27}=+7.7$ (c 0.47, CHCl_{3}); IR (KBr pellet) 3274, 2361, 1722, 1458, 1334, $1190,1160 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.58(\mathrm{dd}$, $1 \mathrm{H}, J=6.5 \& 14.5 \mathrm{~Hz}), 6.47(\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}), 4.20-4.16$ $(\mathrm{m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~d}, 1 \mathrm{H}, J=6 \mathrm{~Hz}), 2.61-2.56(\mathrm{~m}$, $1 \mathrm{H}), 1.20(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 175.4, 145.4, 79.3, 76.1, 52.0, 44.6, 13.9; GC/MS (m/z) calcd. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{IO}_{3}\left(\mathrm{M}^{+}\right) 269.98$, found $237.71\left(-\mathrm{CH}_{3} \mathrm{OH}\right)$.

Methyl (2S,3S)-5-iodo-3-p-methoxybenzyloxy-2-methyl-(4E)-pentenoate (11). To a stirred solution of the alcohol 10 ($100 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.0$ equiv.) and p-toluenesulfonic acid
($4 \mathrm{mg}, 0.019 \mathrm{mmol}, 0.05$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / c$-hexane (2 mL) at $0{ }^{\circ} \mathrm{C}$ was added 4-methoxybenzyl trichloroacetimidate ($104 \mathrm{mg}, 0.37 \mathrm{mmol}, 1.0$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and then stirring was continued at room temperature for 12 hr . The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$ at room temperature. The reaction mixture were filtered through a pad of Celite, evaporated in vacuo. Column chromatography (10% EtOAc in hexane) gave $86 \mathrm{mg}(60 \%)$ of the title compound 11 as a colorless oil. TLC $R_{f} 0.29$ ($10 \% \mathrm{EtOAc}$ in hexane); $[\alpha]_{\mathrm{D}}^{27}=+69.1\left(c 0.81, \mathrm{CHCl}_{3}\right)$; IR (neat) 2949, 2838, 1737, $1610,1513,1458,1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 7.19-7.17 (m, 2H), 6.88-6.86 (m, 2H), 6.42-6.40 (m, 2H), $4.52(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 4.31(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 3.95-$ $3.91(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.62(\mathrm{~m}, 1 \mathrm{H})$, $1.09(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 174.6, 159.2, 158.1, 143.9, 129.7, 129.3, 113.8, 83.0, 80.4, 70.7, 55.3, 51.8, 44.3, 13.3; GC/MS (m/z) calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{IO}_{4}\left(\mathrm{M}^{+}\right) 390.03$, found 262.95 (-I).
(3S,4S)-2,3-Dimethyl-2-hydroxy-6-iodo-4-p-methoxy-benzyloxy-(5E)-heptenoate (12). To a solution of ester 11 ($100 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv.) in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added methylmagnesium chloride ($0.25 \mathrm{~mL}, 3.0$ equiv., 3.0 M in THF) and stirring was continued for 1 hr . The reaction mixture was quenched with saturated ammonium chloride. The mixture was extracted with ethyl acetate. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography ($25 \% \mathrm{EtOAc}$ in hexane) to provide the tertiary alcohol $\mathbf{1 2}(70 \mathrm{mg}, 70 \%)$ as a colorless oil. TLC R_{f} $0.45\left(33 \% \mathrm{EtOAc}\right.$ in hexane); $[\alpha]_{\mathrm{D}}^{27}=+58.2\left(c 0.1, \mathrm{CHCl}_{3}\right)$; IR (neat) $3053,2986,1522,1421,1265,909,738 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.87(\mathrm{~m}$, $2 \mathrm{H}), 6.47-6.33(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=11 \mathrm{~Hz}), 4.27(\mathrm{~d}, 1 \mathrm{H}$, $J=11 \mathrm{~Hz}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}$ $=8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 159.5,145.6,129.9$, $129.7,128.8,113.9,85.8,80.1,73.2,70.4,55.3,46.5,29.5$, 23.5, 13.7; GC/MS (m/z) calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{IO}_{3}\left(\mathrm{M}^{+}\right) 390.07$, found 393.09; Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{IO}_{3}$: C, $49.24 ; \mathrm{H}, 5.94$. Found: C, 49.20; H, 5.92.
(3S,4S)-2,3-Dimethyl-6-iodo-4-(p-methoxybenzyloxy) hexa-1,5-diene (3). To a stirred solution of tertiary alcohol $\mathbf{1 2}$ ($100 \mathrm{mg}, 0.25 \mathrm{mmol}, 1.0$ equiv.) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added methanesulfonyl chloride $(0.1 \mathrm{~mL}, 1.28 \mathrm{mmol}, 5.0$ equiv.) and then triethylamine ($0.36 \mathrm{~mL}, 2.56 \mathrm{mmol}, 10.0$ equiv.) at $-10^{\circ} \mathrm{C}$ by syringe. The mixture was stirred at -10 ${ }^{\circ} \mathrm{C}$. The reaction progress was monitered by TLC. The reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, filtered and evaporated in vacuo. Purification by column chromatography ($3.3 \% \mathrm{EtOAc}$ in hexane) afforded $76 \mathrm{mg}(80 \%)$ of the title compound $\mathbf{3}$ as a white solid. TLC $R_{f} 0.31$ (3.3\% EtOAc in hexane); $[\alpha]_{\mathrm{D}}^{27}=$ $+47.1\left(c \quad 0.08, \mathrm{CHCl}_{3}\right)$; IR (neat) 2963, 2862, 1611, 1513, $1458,1248,1037,1172 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 7.15-7.14 (m, 2H), 6.80-6.78 (m, 2H), 6.38 (dd, 1H, J = 8 \& $14.5 \mathrm{~Hz}), 6.21(\mathrm{~d}, 1 \mathrm{H}, J=14.5 \mathrm{~Hz}), 4.73-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.68-$ $4.67(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}), 4.21(\mathrm{~d}, 1 \mathrm{H}, J=11.5$
$\mathrm{Hz}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H})$, $1.56(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, 3 \mathrm{H}, J=7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 159.1,146.6,145.5,130.2,129.3,113.7,111.8$, 83.5, 78.5, 77.5, 70.2, 55.3, 45.0, 20.1, 15.4, 13.6; GC/MS $(\mathrm{m} / \mathrm{z})$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{IO}_{2}\left(\mathrm{M}^{+}\right) 372.06$, found $244.98(-\mathrm{I})$.

Acknowledgment. This research was assisted financially by Korea Research Foundation Grant (2000-015-DP0260).

References

1. Ishibashi, M.; Takahashi, M.; Kobayashi, J. J. Org. Chem. 1995, 60, 6062-6066.
2. (a) Hollingworth, G. J.; Pattenden, G. Tetrahedron Lett. 1998, 39, 703-706. (b) Terrell, L. R.; Ward III, J. S.; Maleczka Jr, R. E. Tetrahedron Lett. 1999, 40, 3097-3100.
3. (a) Lee, D. H.; Lee, S. W. Tetrahedron Lett. 1997, 38, 7909-7910. (b) Eng, H. M.; Myles, D. C. Tetrahedron Lett. 1999, 40, 22752278. (b) Eng, H. M.; Myles, D. C. Tetrahedron Lett. 1999, 40, 2279-2282. (c) Ishiyama, H.; Takemura, T.; Tsuda, M.; Kobayashi, J. Tetrahedron 1999, 55, 4583-4594. (d) Cid, M. B.; Pattenden, G. Tetrahedron Lett. 2000, 41, 7373-7378. (e) Lee, D. H.; Rho, M. D. Tetrahedron Lett. 2000, 41, 2573-2576.
4. Ishiyama, H.; Ishibashi, M.; Kobayashi, J. Chem. Pharm. Bull. 1996, 44, 1819-1822.
5. (a) Chakraborty, T. K.; Suresh, V. R. Tetrahedron Lett. 1998, 39, 9109-9112. (b) Chakraborty, T. K.; Suresh, V. R. Tetrahedron Lett. 1998, 39, 7775-7778.
6. Kobayashi, J.; Hatakeyama, A.; Tsuda, M. Tetrahedron 1998, 54, 697-704.
7. Williams, D. R.; Kissel, W. S. J. Am. Chem. Soc. 1998, 120, 11198-11199.
8. Williams, D. R.; Meyer, K. G. In Abstracts of Papers, $218^{\text {th }}$ National Meeting of the American Chemical Society, 1999; American Chemical Society: Washington, DC, 1999; p 578ORGN.
9. Williams, D. R.; Myers, B. J.; Mi, L. Org. Lett. 2000, 2, 945-948.
10. (a) Ghosh, A. K.; Onishi, M. J. Am. Chem. Soc. 1996, 118, 25272528. (b) Ghosh, A. K.; Fidanze, S.; Onishi, M.; Hussain, K. A. Tetrahedron Lett. 1997, 38, 7171-7174. (c) Ghosh, A. K.; Fidanze, S. J. Org. Chem. 1998, 63, 6146-6152.
11. Solladie, G.; Hamdouchi, C. Synthesis 1991, 979-982.
12. Mauvais, A.; Hetru, C.; Luu, B. Terahedron Lett. 1991, 32, 51715174.
13. Evans, D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 67576761.
14. Chen, S. L.; Schaub, R. E.; Grudzinskas, C. V. J. Org. Chem. 1978, 43, 3450-3454.
15. (a) Wider, U. Synthesis 1987, 568. (b) Keck, G. A.; Palani, A.; McHardy, S. F. J. Org. Chem. 1994, 59, 3113.
16. Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1984, 753-756.

[^0]: *Corresponding author. E-mail: dhlee@ccs.sogang.ac.kr

