BULLETIN

OF THE

KOREAN CHEMICAL SOCIETY

ISSN 0253-2964 Volume 23, Number 6

BKCSDE 23(6) 783-924 June 20, 2002

Synthesis of Naphthalenes from the Reaction of Baylis-Hillman Acetates and Sulfonyl Group-containing Active Methylene Compounds

Yang Jin Im, Yun Mi Chung, Ji Hyeon Gong, and Jae Nyoung Kim*

Department of Chemistry and Institute of Basic Science, Chonnam National University, Kwangju 500-757, Korea Received February 8, 2002

Keywords: Naphthalenes, Baylis-Hillman acetates, Sulfonyl group, Active methylene compounds.

Regioselective synthesis of naphthalene derivatives has been and continues to be of great interest in organic synthesis. 1,2 New synthetic procedure is still highly desired due to the abundance of the skeleton in many biologically important natural products. 1,2 Recently we have reported on the synthesis of naphthalenes from the reaction of the Baylis-Hillman acetates derived from o-halobenzaldehydes and primary nitro alkanes via the successive $S_N 2'$ - $S_N Ar$ -elimination strategy. 2

As an extension of the reaction we examined the reaction with sulfonyl group-containing active methylene compounds **2a-e** as the surrogates of primary nitro alkanes and the Baylis-Hillman acetates **1**. Our rationale was based on the followings: (1) The first S_N2 ' reaction of **2a-e** in N_NN -dimethylformamide in the presence of K_2CO_3 would proceed without any problem due to the fact that primary nitro alkanes and active methylene compounds **2** have similar pK_a values.³ (2) By the same reason, the second S_NA r step would give good results. (3) In the final elimination step, elimination of p-toluenesulfinic acid or methanesulfinic acid could proceed well as in the case of nitrous acid in our previous paper.²

$$\begin{array}{c} \text{OAc} \\ \text{Xn} \\ \text{X} \\ \text{COOEt} \\ \\ \text{A} \\ \text{COOEt} \\ \\ \text{COOEt} \\ \\ \text{X} \\ \text{A} \\ \text{COOEt} \\ \\ \text{COOEt} \\ \\ \text{A} \\ \text{COOEt} \\ \\ \\ \text{COOET} \\ \\ \\ \text{COOET} \\ \\ \text{COOET} \\ \\ \\ \text{COOET} \\ \\ \\ \text{C$$

Scheme 1

And finally, (4) many sulfonyl group-containing active methylene compounds are commercially available.

As expected, a variety of 1,3-disubstituted naphthalenes $\bf 3a\text{-}i$ were synthesized in good to moderate yields in a one-pot reaction as shown in Scheme 1. We used three Baylis-Hillman acetates $\bf 1a\text{-}c$ as the representative examples. As the sulfonyl group-containing active methylene compounds we chose (phenylsulfonyl)acetonitrile ($\bf 2a$), ethyl methanesulfonylacetate ($\bf 2b$), methanesulfonylacetone ($\bf 2c$), α -(phenylsulfonyl)acetophenone ($\bf 2d$) and bis(phenylsulfonyl)methane ($\bf 2e$). The results are summarized in Table 1.

When we used 2a and 2b, the corresponding naphthalene derivatives 3a-f were obtained in good to moderate yields (60-92%, Table 1). However, in the cases of 2c-e low yields of products 3g-i were obtained (23-55%). Low yield of 3g might be arisen because of the labile acetyl group in the reaction conditions. In the cases of 3h and 3i, steric hindrance in the S_N Ar step seemed the major reason for low yields.

The reaction mechanism for the formation of **3** was depicted in Scheme 1. The $S_N 2'$ type reaction of the *in situ* generated potassium salt of **2** to the Baylis-Hillman acetates **1** gave the *E*-form of cinnamate derivatives **4** as in our previous paper. ^{2,5} Under the reaction conditions **4** readily underwent the next $S_N Ar$ reaction to give **5**. Trace amounts of the corresponding *Z*-form of **4** cannot undergo the next $S_N Ar$ reaction. Finally, a rapid elimination of *p*-toluene-sulfinic acid or methanesulfinic acid from **5** gave the naphthalenes **3**.

As a conclusion we disclosed a facile methodology for the synthesis of 1,3-disubstituted naphthalenes from the reaction of Baylis-Hillman acetates and sulfonyl group-containing active methylene compounds via the successive S_N2' - S_NAr -elimination strategy.

Acknowledgment. This work was supported by a Korea

Table 1. Synthesis of 1,3-disubstituted naphthalene derivatives **3a-i**

Entry	B-H acetate 1	Conditions	Product 3 Yield (%) ^a
1	OAc COOEt F 1a	PhSO ₂ CH ₂ CN (2a) K_2CO_3 , DMF rt (10 min) \rightarrow 60 °C (5 h)	COOEt 92 CN 3a (97-98)
2 CI	OAC COOEt	PhSO ₂ CH ₂ CN K_2 CO ₃ , DMF rt (10 min) \rightarrow 60 °C (3 h)	COOEt 90 3b (132-133)
3	CI OAC COOEt	PhSO ₂ CH ₂ CN K ₂ CO ₃ , DMF rt (10 min) → 60 °C (2 h)	COOEt 88 CN 3c (154-155)
4	1a	CH ₃ SO ₂ CH ₂ COOEt (2b) K ₂ CO ₃ , DMF rt (10 min) \rightarrow 70 °C (36 h)	COOEt 77 COOEt 3d (38-39)
5	1b	CH ₃ SO ₂ CH ₂ COOEt K ₂ CO ₃ , DMF rt (10 min) → 70 °C (36 h)	COOEt 60 CI COOEt 3e (87-88)
6	1c	CH ₃ SO ₂ CH ₂ COOEt K ₂ CO ₃ , DMF rt (10 min) \rightarrow 70 °C (18 h)	COOEt 69 CI COOEt 3f (77-78)
7	1c	CH ₃ SO ₂ CH ₂ COMe (2c) K ₂ CO ₃ , DMF rt (10 min) \rightarrow 70 °C (12 h)	Ci COMe 3g (89-90)
8	1c	PhSO ₂ CH ₂ COPh (2d) K_2 CO ₃ , DMF rt (10 min) \rightarrow 90 °C (36 h)	COOEt 55b CI COPh 3h (139-140)
9	1c	PhSO ₂ CH ₂ SO ₂ Ph (2e) K ₂ CO ₃ , DMF rt (10 min) → 90 °C (36 h)	COOEt 23° SO ₂ Ph 3i (170-171)

^aMp was written in parenthesis. ^bThe yield of **3h** was improved up to 70% when we used 2.0 equiv. of **1c**. ^cThe yield of **3i** was improved to 39% when we used 2.0 equiv. of 1c.

Research Foundation Grant (KRF-2001-015-DP0326).

References and Notes

- 1. (a) Seong, M. R.; Song, H. N.; Kim, J. N. Tetrahedron Lett. 1998, 39, 7101 and further references cited therein. (b) Rucker, M.; Bruckner, R. Synlett 1997, 1187.
- 2. Kim, J. N.; Im, Y. J.; Gong, J. H.; Lee, K. Y. Tetrahedron Lett. 2001, 42, 4195 and further references cited therein.
- 3. Smith, M. B.; March, J. Advanced Organic Chemistry, Fifth ed.; Wiley-Interscience: New York, 2001; pp 327-362.
- 4. Typical procedure for the preparation of 6-chloro-4-cyanonaphthalene-2-carboxylic acid ethyl ester (3b): To a stirred suspension of (phenylsulfonyl)acetonitrile (2a, 182 mg, 1.0 mmol) and potassium carbonate (415 mg, 3 mmol) in DMF (3 mL) was added dropwise the Baylis-Hillman acetate 1b (317 mg, 1 mmol in 1 mL of DMF, 10 min) and stirred at 60 °C for 3 h. After the usual workup process and column chromatographic purification (hexane: CH₂Cl₂, 1:3) analytically pure product 3b was isolated 234 mg (90%): white solid, mp 132-133 °C; IR (KBr) 2224, 1720 cm⁻¹; ¹H NMR (CDCl₃) δ 1.47 (t, J = 7.1 Hz, 3H), 4.48 (q, J = 7.1 Hz, 2H), 7.65 (d, J = 8.7 Hz, 1H), 8.00 (d, J = 8.7 Hz, 1H), 8.28 (s, 1H), 8.53 (s, 1H), 8.79 (s, 1H); 13 C NMR (CDCl₃) δ 14.37, 62.04, 109.94, 116.59, 124.30, 127.68, 129.57, 130.49, 131.57, 133.07, 134.53, 135.27, 137.54, 164.53.
- 5. For our recent papers, see: (a) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Gong, J. H. Synlett 2002, 173. (b) Gong, J. H.; Im, Y. J.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2002, 43, 1247. (c) Chung, Y. M.; Gong, J. H.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2001, 42, 9023. (d) Kim, J. N.; Kim, H. S.; Gong, J. H.; Chung, Y. M. Tetrahedron Lett. 2001, 42, 8341. (e) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, H. S. Tetrahedron Lett. 2001, 42, 3737. (f) Kim, H. S.; Kim, T. Y.; Lee, K. Y.; Chung, Y. M.; Lee, H. J.; Kim, J. N. Tetrahedron Lett. 2000, 41, 2613. (g) Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343.