Notes

Syntheses of 3-Pyrimidyl- and 3-Pyranyl-5,6-benzocoumarin Derivatives

Ibrahim M. El-Deen,* El-Sayed I. Al-Wakeel, and Ahmed G. El-Mawla
*Faculty of Education, Suez Canal University, Port-said, Egypt
Faculty of Science, Suez Canal University, Ismailia, Egypt
Received October 3, 2001

Keywords : Syntheses, Heterocyclyl-5,6-benzocoumarins.

Sulpha drugs are well recognized for their various physiological activities, ${ }^{1,2}$ likewise, many pyrimidine derivatives are used as therapeutic agents, ${ }^{3-8} 5,6$-Benzocoumarin derivatives show antimicrobial, ${ }^{9}$ antiinflammatory ${ }^{10}$ and anticancer ${ }^{11}$ activities. The present work describes the syntheses of some new heterocyclyl-benzocoumarins, starting from 3-acetyl-5,6-benzocoumarin (1), which are depicted in Scheme 1 and 2.

3-(2'-Formyl-1'-chlorovinyl)-5,6-benzocoumarin (2) was prepared from 3-acetyl-5,6-benzocoumarin (1) and DMFPOCl_{3}, according to literature procedure. ${ }^{12}$ Treatment of
compound 2 with thiourea, 3-amino-1,2,4-triazole, 2aminobenzimidazole and 3-amino-5-phenylpyrazole in dimethyl formamide gave the corresponding 3-(2'-mercapto or 1",2",4-triazolo[$\left.1^{\prime}, 2^{\prime}-\mathrm{b}\right]$ or benzimidazole[1',2'-b] or 5"phenylpyrazolo[$\left.1^{\prime}, 2^{\prime}-\mathrm{b}\right]$ pyrimidin- 6 '-yl)-5,6-benzocoumarins (3-6).
It has been reported recently ${ }^{13-16}$ that 3-(2'-formyl-1'-chlorovinyl)-5,6-benzocoumarin (2) reacts with chloroacetic acid in the presence of $\mathrm{Ac}_{2} \mathrm{O}-\mathrm{AcONa}$ to afford the corresponding 3-(3'-chloro-2'-oxo-2'H-pyran-6'-yl)-5,6-benzocoumarin (7).

Scheme 1

Scheme 2

Treatment of compound 7 with sodium azide in acetic acid gave 3-(1",2",3"-triazolo[3',4'-b]pyran-6'-yl]-5,6-benzocoumarin (8). Also, compound 7 reacted with thiourea, hydrazine monosulphate and aromatic amines (namely aniline and p toludine) in ethanol to give 3-(2"-thioxo-2"H-imidazolo-[3',4'-b]pyran-6'-yl]-5,6-benzocoumarin (9) and 3-(sub-stituent-2'-oxo-2H'-pyran-6'-yl)-5,6-benzocoumarins (10a-c).

Experimental Section

Melting points were determined on a Boetium Hostage apparatus and uncorreted. IR spectra were recorded on a Perkin-Elmer FTIR 1725 spectrometer. The H-NMR Sepctra were recorded on a General Electric QE 300, and chemical shifts were given with respect to TMS. Mass spectra were obtained on a VG Autspec CEI and FAB^{+}and a Hewlett Packard MS-Engine thermospray. Microanalyses were conducted using an elemental analyzer 116.
General procedure for synthesis of 3-(substituentpyri-midayl)-5,6-benzocoumarins (3-6). A mixture of 2 (0.01 mol) and aminoheterocycles such as 3-aminotriazole, 2aminobenzaimidazol and 3-amino-5-phenylpyrazole (0.01 mol) or thiourea $(0.01 \mathrm{~mol})$, and potassium carbonate $(0.03$ mol) in DMF (60 mL) was heated under reflux for 6 hr . The solid formed after cooling was filtered off, dried and recrystallized from ethanol to give corresponding product 46. After the reaction with thiourea, the reaction mixture was
cooled and acidified with diluted hydrochloric acid (2\%). The product obtained was filtered, washed with water, dried and recrystallized from ethanol to give 3 .

3-(2'-Thioxo-2H-pyrimidin-6'-yl)-5,6-benzocoumarins (3), yield 64%; mp $205{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right) 3253(\mathrm{NH}), 1721$ (lactone of coumarin); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 7.19-8.20(\mathrm{~m}, 8 \mathrm{H}$, ArH and H-5 of pyrimidine), 8.79 (d, 1H, H-3 of pyrimidine), 10.20 (s, 1H, NH); Mass (m/z) 306 (51) M ${ }^{+}$; Found: C, 66.31; H, 3.13; N, 8.89: S, 10.21. $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires: C, 66.66; H, 3.27; N, 9.15; S, 10.45.

3-(1",2",4-Triazolo[1,2'-b]pyrimidin-6'-yl)-5,6-benzocoumarin (4), yield 93%; mp $175{ }^{\circ} \mathrm{C}$; IR (cm^{-1}) 1723 (lactone of coumarin), $1630(\mathrm{C}=\mathrm{N})$; Mass (m/z) 314 (38) M^{+}; Found: C, 68.62; H, 2.97; N, 17.47. $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires: C, $68.79 ; \mathrm{H}$, 3.18; N, 17.83.

3-(Benzimidazole[1',2'-b]pyrimidin-6'-yl)-5,6-benzocoumarin (5), yield 91%; mp $147^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right) 1719$ (lactone of coumarin), 1628 ($\mathrm{C}=\mathrm{N}$); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 7.01-8.21$ (m, $12 \mathrm{H}, \mathrm{ArH}$ and $\mathrm{H}-5$ of pyrimidine), 8.78 (d, $1 \mathrm{H}, \mathrm{H}-4$ of pyrimidine); Mass (m/z) 363 (42) M^{+}; Found: C, 75.86; H, 3.37; $\mathrm{N}, 11.39 . \mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires: C, $76.05 ; \mathrm{H}, 3.58 ; \mathrm{N}$, 11.57.

3-(5"-Phenylpyrazolo[1',2'-b]pyrimidin-6'-yl)-5,6-benzocoumarin (6), yield 64%; mp $184{ }^{\circ} \mathrm{C}$; IR (cm^{-1}) 1721 (lactone of coumarin), $1629(\mathrm{C}=\mathrm{N}) ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}\right) \delta$ 7.13-8.21 (m, 14H, ArH; pyrazol and H-5 of pyrimidine), 8.77 (d, H-4 of pyrimidine); Mass (m/z) 389 (82) M^{+};

Found: C, $77.00 ; \mathrm{H}, 3.49 ; \mathrm{N}, 10.52 . \mathrm{C}_{25} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires: C , 77.12; H, 3.85; N, 10.79.

3-(3'-Chloro-2'-oxo-2'H-pyran-6'-yl)-5,6-benzocoumarin (7). A mixture of $2(0.01 \mathrm{~mol})$, chloroacetic acid $(0.01 \mathrm{~mol})$, acetic anhydride $(0.01 \mathrm{~mol})$ and fused sodium acetate (0.02 mol), was fused on a hot plate for $5-10 \mathrm{~min}$. The reaction mixture was added to acetic acid $(50 \mathrm{~mL})$ and heated under reflux for 6 hr ., then cooled and poured onto water. The resulting product was filtered off, washed with water, dried and recrystallized from ethanol to give 7, yield 61%; mp $155-156{ }^{\circ} \mathrm{C}$; IR (cm^{-1}) 1729-1719 (br. lactones of coumarin and pyrane); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 7.19-8.27$ (m, 9H, ArH and pyrane ring); Mass (m/z) 325 (63) M ${ }^{+}$; Found: C, 66.32; $\mathrm{H}, 2.49 ; \mathrm{Cl}, 10.72 . \mathrm{C}_{18} \mathrm{H}_{9} \mathrm{ClO}_{4}$ requires: C, 66.56; H, 2.77; Cl, 10.94.
3-(1',2', $\mathbf{3}^{\prime \prime}$-Triazolo[3',4'-b]pyran-6'-yl]-5,6-benzocoumarin (8). A solution of $7(0.01 \mathrm{~mol})$ and sodium azide $(0.01 \mathrm{~mol})$ in acetic acid $(50 \mathrm{~mL})$ was heated in water-bath for 6 hr ., then cooled and poured onto water. The resulting product was filtered off, washed with water, dried and recrystallized from ethanol to give $\mathbf{8}$, yield 80%; mp $302{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right)$ 1729-1721 (lactones of coumarin and pyrane ring); Mass (m/z) 331 (36) M ${ }^{+}$; Found: C, 65.01; H, 2.48; N, 12.36. $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires: $\mathrm{C}, 65.25 ; \mathrm{H}, 2.72$; $\mathrm{N}, 12.69$.

3-(2'-Thioxo-2H-imidazolo[3',4'-b]pyran-6'-yl]-5,6-benzocoumarin (9). A mixture of $7(0.01 \mathrm{~mol})$, thiourea (0.01 $\mathrm{mol})$ and potassium carbonate $(0.02 \mathrm{~mol})$ in ethanol (50 mL) was heated under reflux for 6 hr . The reaction mixture was cooled and acidified with diluted $\mathrm{HCl}(2 \mathrm{~mol} / \mathrm{L})$. The deposited solid was filtered off, washed with water, dried and recrystallized from ethanol to give 9 , yield 55%; mp 210 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right) 3185(\mathrm{NH}), 1732-1717$ (lactones of coumarin and pyrane ring); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 7.20-9.19(\mathrm{~m}, 8 \mathrm{H}$, ArH and pyrane ring), 10.51-10.53 (br.s, $2 \mathrm{H}, \mathrm{NH}$); Mass (m/z) $362(73) \mathrm{M}^{+}$; Found: C, 62.63; H, 2.49; N, 7.51; S, 8.48. $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4}$ S requires: C, 62.98: H, 2.76: $\mathrm{N}, 7.73$: S, 8.84.
3-(3'-Substituent-2'-oxo-2'H-pyran-6'-yl)-5,6-benzocoumarins ($10 \mathrm{a}-\mathrm{c}$). A solution of $7(0.01 \mathrm{~mol})$ and aromatic amines namely, aniline and p-toludine (0.01 mol) or hydrazine monosulphate (0.01 mol), and sodium acetate $(0.02$ $\mathrm{mol})$ in ethanol (70 mL) was heated under reflux for 4 hr . The product formed after cooling was filtered off, washed with water and recrystallized from ethanol, to give 10a-c.
3-(3'-Phenylamino-2'-oxo-2'H-pyran-6'-yl)-5,6-benzocoumarins (10a), yield 77%; mp $190{ }^{\circ} \mathrm{C}$; IR (cm^{-1}) 3189
(NH), 1728-1717 (lactones of coumarin and pyrane ring); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 7.02-8.20(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}$, and pyrane ring), $10.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; Mass (m/z) 381 (36) M ${ }^{+}$; Found: C, 75.27 ; H, 3.66; N, 3.32. $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires: C, $75.59 ; \mathrm{H}$, 3.94; N, 3.67.

3-(3'-p-Methylphenylamino-2'-oxo-2'H-pyran-6'-yl)-5,6benzocoumarins (10b), yield 61%; mp $183{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{cm}^{-1}\right)$ $3186(\mathrm{NH}), 1726-1716$ (lactones of coumarin and pyrane ring); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 2.32$ (s, $3 \mathrm{H}, \mathrm{CH} 3$), 7.10-8.19 (m, 13H, ArH and pyrane ring), $10.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;$ Mass (m/z) 395 (39) M ${ }^{+}$; Found: C, 75.64 ; H, 4.03; N, 3.25. $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{NO}_{4}$ requires: $\mathrm{C}, 75.95 ; \mathrm{H}, 4.30 ; \mathrm{N}, 3.54$.

3-(3'-Hydrazino-2'-oxo-2'H-pyran-6'-yl)-5,6-benzocoumarins (10c), yield 53\%; mp $240^{\circ} \mathrm{C}$; IR (cm^{-1}) 3340, 3251, 3180 (NH, NH2), 1729-1719 (lactones of coumarin and pyrane ring); ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 9.23$ (s. $1 \mathrm{H}, \mathrm{NH}$); Mass (m/z) 320 (42) M^{+}; Found: C, 67.29; H, 3.51; N, 8.44. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires: $\mathrm{C}, 67.50 ; \mathrm{H}, 3.75 ; \mathrm{N}, 8.75$.

References

1. Guarneri, M. Bull. Chem. Form. 1990, 99, 259.
2. Albert, O.; Bergonzio, G. Farmaco (Pavia) Ed. Sci. 1961, 16, 557.
3. Wierzxhowsk, K. L.; Lifonskao, E.; Surger, D. J. Am. Chem. Soc. 1965, 87, 4621.
4. Howard, J. B.; Cevik, N.; Murphy, L. M. Cancer Chemother. 1966, 50, 287.
5. Flco, A. F.; Goodwier, G. W.; Hatchings, H. G.; Rollo, R. I.; Russell, B. P. Brit. J. Pharmacol. 1951, 6, 186.
6. Jain, R.; Pandey, P. J. Indian Chem. Soc. 1988, 65, 354.
7. Hampshier, J.; Hebbom, P.; Triggle, M. M.; Triggle, J. D.; Fickers, S. J. Med. Chem. 1965, 8, 745.
8. Gerg, G. H.; Prakash, C. J. Med. Chem. 1971, 4, 175.
9. Hammad, A.; El-Sayed, A. S.; Islam, I. E.; Shafik, N. J. Chem. Soc. Pax. 1990, 12, 292 (Chem. Abstr. 1990, 115, 71279s).
10. Kulkarni, G. M.; Kulkarni, H. V.; Patil, V. D.; Shridhar, D. B.; Laxmana, M. Rev. Roum. Chim. 1990, 35, 549.
11. Harvey, R. G.; Cortex, C.; Ananthanarayan, T. P.; Schmolka, S. J. Org. Chem. 1988, 53, 3936.
12. Gzerney, P.; Hartmann, H. J. Prakt. Chem. 1982, 324, 225.
13. El-Deen, I. M. Chinese J. Chem. 1998, 16, 533 (Chem. Abstr. 1999, 130, 223197y).
14. El-Deen, I. M. Chinese J. Chem. 1999, 17, 391 (Chem. Abstr. 1999, 131, 228703r).
15. El-Deen, I. M.; Abd El-Fattah, M. E. Indian J. Heterocycl. Chem. 1999, 8, 319 (Chem. Abstr. 1999, 131, 170327c).
16. El-Deen, I. M.; Ibrahim, H. K. Phosphorus Sulfur Silicon 2000, 160, 241.
