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Mannich cyclizations are highly versatile reactions thatexceedingly fast, unimolecular decarboxylation to farm
are used often to prepare structurally complex nitrogeramino radical§. Since radicals of this type are in the
heterocycles. A number of approaches have been developpdthway for oxidative iminium ion formation (Scheme 2),
to initiate and terminate these procesdRatrticularly elegant we expected that Ce(IV) oxidations @faminocarboxylates
methodology for these purposes have come from studies B, E = CQMetal) would serve as an efficient procedure to
Overman and his coworket€One example is found in the promote Mannich cyclizations. This method would be flex-
transformation of the allysilane linked amirle to the ibile since a-C-substituted a-aminocarboxylates can be
functionalized piperidin@ (Scheme 1). readily prepared starting with natural and unnatoraimino

Several years ago, we developed new strategies to initiageids.

Mannich cyclizations, which are based on the user-of

silyamine anda-silylamide oxidations to generate the key Messi%
iminium and N-acyliminium ion intermediaté$-ormation N

of iminium ions in these reactions follows the sequential /( Ry
SET-desilylation pathway depicted in Scheme 2. Ensuing E Rz
investigations showed that the oxidative Mannich cyclizatior 3

methodology is applicable to stereoselective piperidine ring
formatiorf and it serves as an alternative procedure to In a similar manner, a variety of high yielding sequences
promote Pictet-Spengler cyclizatiorAlso, we found that have been developed for synthesisrafubstituteda-stannyl
this aproach can be extended to Prins cyclizations where kegmines’ Based on a consideration of oxidation potential
oxonium ion intermediates are generated by oxidatiam of data and the reactivity of intermediate amine cation radicals,
stannyl ethers. we felt thata-stannyl amines3{ E = SnBuy) would also be

A limitation of this methodology, when applied to Mannich versatile substrates for Mannich cyclization reactions.
cyclizations, results from the shortage of methods to synthe- The foundations of these proposals have been evaluated in
size a-C-branchedr-silylamine substrate3 (E = SiMe;, Rx preliminary studies with the allysilane tetheraeamino-
= alkyl or aryl)! In contemplating remedies to this problem, carboxylates8 and 9 (Scheme 3) andr-stannylaminel2
we relied on the results of our earlier mechanistic investi{Scheme 4). The substrates for this study are prepared by
gations of amine and amide SET-promoted oxidation reacudsing the routes outlined in Schemes 3 and 4. As anticipated,
tions. By using laser flash photolysis techniques, weindependent treatment 8fand9 with Ce(NH:)2(NOs)s (3
demonstrated that cation radicals derived by photoinducetholar excess) in anhydrous MeCN at®@5or 6h, followed
one electron oxidation ofr-aminocarboxylates undergo by silica gel chromatography, affords the piperidit@
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"BusSnCHyl + 4 ——3 MeSSi/Y((I:HZ)n ;AEN! 10 (52%) H); 13C'-NMR (CDCB) 1.22 (Si(CH)s), 14.4 (OCHCHj3), 25.9
Negn © (CH2Si(CHs)z), 26.9 (CHCH,CH:N), 35.8 (GH,CH,CH;N),
S’:Buna 53.7 (CHCH,CH;N), 54.2 (NGH,CO;), 58.3 (ArCH2N), 60.1
(OCH.CHg), 107.1 (HH,=C), 127.0, 128.3 and 129.0 (aromatic),
139.2 (Ar, C-ipso), 147.3 (CHC), 171.5 (CQ); MS (FAB),
m/z (rel. intensity) 348 (M1, 20), 319 (4), 274 (39), 219
(15), 206 (27), 91 (100); HRMS (FAB), m/z 348.2335
(63%) and hydroazepindl (25%), respectively. The (CaoHsz4NO,Si requires 348.2359).
efficiencies of these reactions are comparable to those Sodium N-Benzyl-N-(trimethylsilylmethylalkenyl)amino
recorded earlier for Ce(lV) oxidation of the correspondingCarboxylates 8 and 9Independent solutions of the est@rs
a-silylamines (45-62%j. Likewise, CAN oxidation ofa- and7 (1.82 g, 5.47 mmoand 1.90 g, 7.47 mmol, respec-
stannyl aminel2 under similar conditions leads to isolation tively) and sodium hydroxide in 30 mL of ethanol were
of piperidinel0in a 52% vyield. stirred and reflux for 10 h and then concentrétegdacuoto
The results of this preliminary effort demonstrate thatgive residues which were crystallized (ethylacetate) to yield
Ce(lV) oxidations ofa-aminocarboxylates and-stannyl-  1.20 g (67%) o8 and 1.12 g (60%) &.
amines serve as useful procedures to initiate Mannich cycli- 8: mp 249-250C; *H-NMR (CDCk) 0.02 (s, 9H, Si(Chk}),
zation reactions. Owing to the relative simplicity of substratel.47 (s, 2H, CkSi(CHg)s), 2.18 (tJ = 8.1 Hz, 2H, CHCH,N),
synthesis and the variety of conditions that can be employe®.68 (t,J = 8.1 Hz, 2H, CHCH,N), 3.10 (s, 2H, ArCkN),
for these oxidationse(g, photochemical, electrochemica?  3.75 (s, 2H, NCHCOy), 4.51 (dJ = 12.5 Hz, 2H, vinyl CH),
iodonium iort®), these approaches should be applicable t&.26-7.41 (m, 5H, Ar-i **C-NMR (CD;OD) 0.78 (Si(CH)3),

12
Scheme 4

complexN-heterocycle synthesis. 28.2 (H,Si(CHg)s), 36.5 (GH,CH:N), 54.4 (CHCH:N), 59.3
(ArCH.N), 59.8 (NGH.CO,), 108.8 (¢1,=C), 128.4, 129.5
Experimental Section and 131.0 (aromatic), 140.2 (Ar, C-ipso), 147.6 £{68),

177.6 (CQ); MS(FAB), m/z (rel. intensity) 328 (M1, 12),

N-BenzylN-(trimethylsilylmethylalkenyl)amino Carbox- 250 (12), 242 (100), 184 (14), 115 (28); HRMS (FAB), m/z
ylate Esters 6 and 7To independent solutions of the kndwn 328.1721 (GH»/NO,NaSi requires 328.1709).
N-benzyIN-(trimethylsilymethylalkenyl)amined (3.38 g, 9: mp 247-248C; 'H-NMR (CDCk) 0.02 (s, 9H, Si(Ch)z),
14.6 mmol) and5 (3.82 g, 14.6 mmol) and potassium 1.50 (s, 2H, CkBi(CH)s), 1.73-1.61 (m, 2H, C}CH,CH:N),
carbonate (4.04 g, 29.3 mmol) in 70 mL of acetonitrile at 01.91 (t,J=7.3 Hz, 2H, CHCH,CH:N), 2.68 (t,J= 7.9 Hz,
°C were slowly added a solution of ethylbromoacetate (1.7@H, CHCH,CH:N), 3.07 (s, 2H, NCkKCO,), 3.74 (s, 2H,
mL, 16.0 mmol) in 40 mL of acetonitrile. The resulting mix- ArCH2N), 4.51 (d,J=20.2 Hz, 2H, vinyl CH), 7.26-7.38
tures was stirred for 30 min af@, pyridine (1.30 mL, 16.0 (m, 5H, Ar-H); *C-NMR (CDCk) 1.0 (Si(CH)3), 26.2
mmol) was added and the mixtures were stirred &t for (CHSI(CHg)s), 27.6 (CHCH,CH:N), 37.4 (GH,CH,CH:N),
4h. The resulting solutions were filtered through celite and5.2 (CHCH,CH,N), 58.9 (ArGH.N), 59.7 (NCGH.COy),
the filtrates were concentratéd vacuoto give a residues 107.9 (GH,=C), 128.1, 129.3 and 130.9 (aromatic), 140.1
which were subjected to column chromatography (silica(Ar, C-ipso), 148.7 (CKHC), 179.4 (CQ); MS (FAB), m/z
1:7 CHCI,: hexane) to yield 3.03 g (62%) 6fand 2.64 g  (rel. intensity) 342 (N1, 32), 274 (21), 137 (21), 115 (30),
(52%) of7, respectively. 73 (100); HRMS (FAB), m/z 342.1864 {f,7NO.NaSi

6: 'H-NMR (CDCk) 0.01 (s, 9H, Si(Ch)s), 1.26 (t,J = requires 342.1865).
7.2 Hz, 3H, OCHCHs), 1.51 (s, 2H, CbBi(CHs)s), 2.18 (t,J Ceric Ammonium Nitrate Promoted Oxidative Cycliza-
=7.7 Hz, 2H, CHCH:N), 2.80 (tJ = 7.7 Hz, 2H, CHCH:N), tions of 8 and 9 Independent solutions & (0.33 g, 1.00
3.33 (s, 2H, NCHCGO,), 3.82 (s, 2H, ArCbN), 4.16 (gJ = mmol) andd (0.34 g, 1.00 mmol) and ceric ammonium nitrate
7.2 Hz, 2H, OCHCH;3), 4.57 (dJ = 12.5 Hz, 2H, vinyl CH), (1.64 g, 3.00 mmol) in 40 mL of anhydrous acetonitrile were
7.25-7.37 (m, 5H, Ar-H °C-NMR (CDC¥) 1.4 (Si(CH)s3), stirred at 25°C for 6 h, diluted with 40 mL of methylene
14.3 (OCHCHz3), 26.8 (GH,Si(CHs)s), 36.0 (GHCH2N), 52.5  chloride and filtered through celite. Aqueous NaCl was added
(CHxCH2N), 54.1 (NGH.CO), 58.0 (ArGH:N), 60.2 (QEL:CHg), and the organic layers were separated, dried over sodium
108 ((H,=C), 127,.0, 128.2 and 128.9 (aromatic), 138.9 (Ar,sulfate and concentratdd vacuo giving residues which
C-ipso), 145.5 (CkEC), 171.4 (CQ); MS (FAB), m/z (rel.  were subjected to column chromatography (silica, 1: 1 ethyl
intensity) 334 (M+1, 23), 260 (10), 244 (6), 219 (3), 205 acetate : hexane) to give 118 mg (63%) of the kriown
(100); HRMS(FAB), m/z 334.2213 (H3,NO,Si requires  piperidine10 and 50 mg (25%) of the knohydroazepine
334.2202) 11

7: 'H-NMR (CDCk) 0.04 (s, 9H, Si(CH3), 1.25 (t,J = N-Benzyl-N-(3-trimethylsilylmethylbutenyl)stannyl-
7.1 Hz, 3H, OCHCHz), 1.50 (s, 2H, CbBi(CHs)z), 1.60-1.72  methylamine 12 A solution of the knowhanine4 (1.73 g,
(m, 2H, CHCH>CH:N), 1.96 (tJ=7.7 Hz, 2H, CLCH,CH:N), 7.00 mmol) and potassium carbonate (2.00 g, 14.0 mmol) in
2.66 (t,J=7.3 Hz, 2H, CHCH,CH:N), 3.31 (s, 2H, NCKCOy), 50 mL of acetonitrile was stirred at 25 for 30 min. Trin-
3.80 (s, 2H, ArCEN), 4.14 (qJ = 7.1 Hz, 2H, OCBCHs), butylstannylmethyl iodide (3.45 g, 8.00 mmol) in 30 mL of
4.53 (d,J = 14.7 Hz, 2H, vinyl CH), 7.25-7.36 (m, 5H, Ar-  acetonitrile was slowly added to this solution &C0 The
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resulting mixture was stirred at®C for 30 min. Pyridine the NIH (GM-27250) ACS-PRF (35546-AC1).

(0.65 mL, 8.00 mmol) was added and the mixture was
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