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The reactions of aromatic and aliphatic acyl halides with Results and Discussion
hydroxylic molecules under solvolytic condition or with low
concentrations of reactant in aprotic solvent have been stud-The specific rate constants of solvolysispefitrobenzyl
ied extensively:> However, the reaction mechanism is not chloroformate ¢-NBC; p-NO,CsH4CH,OCOCI) studied at
well established. 25.0°C are reported in Table 1 for a variety of pure and
Bentley and co-worketé have proposed initially that- binary solvent mixtures.
substituted benzoyl chlorides react by concurrent addition- The products from the solvolyses of the substrate in EtOH,
elimination and concertedy3 processes (a loose transition 80%EtOH, 80%TFE, and 80TFE-20EtOH have been deter-
state). Leghas proposed that these solvolyses proceed by mined by gas chromatography after reaction at 26.0
combined {1-S\2 and carbonyl addition pathway. Hudson These results are reported in the footnote to Table 1.
and Mos8 proposed that the reaction with moderate concen- An analysis in terms of the simple Grunwald-Winstein
tration of a hydroxylic species in low polar aprotic solventequation [Eq. (1)] leads to an extremely poor correlation
favored an addition-elimination mechanism, or a possiblevith values of 3.6 for th&-test value and 0.498 for the cor-
mechanism with a tight\8 transition state. relation coefficient. Clearly, this equation doesn'’t correlate
We previously reported that the methanolysis of benzoythe data. Again, analysis of the data using the extended
halideg and a series of aliphatic acyl halitlesacetonitrile  Grunwald-Winstein equation [Eq. (2)] leads to a good linear
proceed through either an addition-elimination (tetrahedratorrelation with values of 1.66 +0.12 for0.47 £ 0.07 for
intermediate) or a loosend transition state (carbocation m, 0.08 +0.09 forc, 0.980 for the correlation coefficient,
character) with the substrate structure, reactant, and solveahd 119 for thé&-test value (Figure 1).
conditions. Also, kinetic order for methanolyses of carboxy-
lic acid chloride¥®and bromide’8 in acetonitrile have been Table 1 Specific rate constants of solvolysis phitrobenzyl
analysed in terms of both first- and second-order in metharshloroformaté in pure and mixed solvents at 28@, and theNy
ol (second- and third-order overall). The term of secondandYci values for the solvents

order in methanol was proposed to involve general-base  solvent 10k (sec?) N Yol
cataIyS|§, and the term of flrst—order to involve nucleophilicTyqo,Meors 624003 017 117
attack lehout genergl—base catalysis. ' 90%MeOH 132401 001 018
In partlcglar, the simpfeand extended Grunwald-Wm— 80%MeOH 18.7+0.2 -0.06 0.67
stein equations [Egs. (1) and (2)] have been applied to a vemoowEtOH? 1.86+0.01 0.37 252
useful mechanistic tool for solvolysis reactions. In Egs. (1)80%EtOH? 7.47+0.03 0.00 0.00
and (2),k andk, are the specific rate constants of solvolysis 60%EtOH 10.6+0.4 -0.38 1.38
in a given solvent and in 80% ethanol, respectivelythe  90%MeCO 0.0292 +0.002 -0.35 -2.22
sensitivity to changes in solvent nucleophiliciyr(*mis  80%MeCO 0.907 +0.006 -0.37 -0.80
the sensitivity to changes in ionizing powég);*?andcisa ~ 70%MeCO 1.72+0.01 -0.42 0.17
: 90%TFE 0.0191 £0.0010 -2.55 2.83

residual term.

80%TFE 0.0792 £0.020 -2.19 291
log(Kko) =mYei+ € (1)  80T-20E" 0.0362 +0.0012 -1.76 1.89
log(k/ks) =INT + mYe + C (2)  60T-40E 0.216 +0.004 -0.94 0.63

R il ted that theal bond Ki . aSubstrate concentration of. 5.00x 10° M. "Volume/volume basis at
ecently, we reported tha alues (bond making) in 55 goc " except for TFE-HD mixture, which are on a weightiweight

the range 1.5-1.7 amd-values (bond breaking) in the range basis.®From ref. 11%From ref. 12°Rate constant of MeOXvegop =

0.5-0.6 for the solvolyses of several chloroformate €sters (2.58 £0.03) 10 sec at 25.0°C, kinetic solvent isotope effect value,
corfkveon = 2.42.'Percentage of products for the solvolysis of this

will be typical values for the operation of an addition-elimi- gpsirate;  10096EtOHp-NO,CH.CH,OCOE (retention time (.1,
nation pathway with addition being rate-determining (0r10.58 min., 100%), 80% EtOH»-NO,CeHsCH,OH (r.t., 8.95 min.,
. g -N02C5H4CH20H (I’.t., 8.95 min., 89.8%) anﬂ-NOZCeH4CH20Tfe

In the present study, we analize the specific rate constangs(_ 9.42 min., 10.2%), 80T-20B:NO:CeHiCH.OTfe (rt., 9.42 min.
of solvolysis ofp-nitrobenzyl chloroformate in a wide range 1.10%) andp-NOzCsHsCH,OCOET (r.t., 10.58 min., 98.9%J100%

. . A _ ES _ 1, —
of solvent type using the simple and extended GrunwaldY€OH; Aflg; = 50 kJ - mol', 4S5 = -137 J. motK™, 100%
Winstei i d al t ing th th tOH; Aflyqy =59 k- mot, ASyqq =-125 J - motK™, 80%ELOH;
instein equations, and also report concerning the methandl; *' = &%y . mof, 45,7, = 438 J - mofk-. M-E are tifluoro.

ysis of this substrate in a series of haloformates in acetone.ethanol (TFE)-ethanol mixtures (EtOH).
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Figure 1. Plot of logik/ks) for solvolyses of-nitrobenzyl chloro-  Figure 2. Plotsk,* vs the initial methanol concentrations for the
formate at 25.0C against (1.68r + 0.47Yc)). methanolysis op-nitrobenzyl chloroformate in acetone at various
temperatures.

The very large sensitivityl-{zalue) to changes in solvent
nucleophilicity suggests a very pronounced involvement ofvents for a preformed free or ion-paired carboxylium ion. As
the solvent as a nucleophile in the rate-determining stegreviously reported:*'the product studies for the solvoly-
consistent with the first step of an addition-elimination ses ofp-nitrobenzyl chloroformate are consistent with an
mechanism being rate-determining. Theaedm-value are  addition-elimination pathway.
similar to those previously obtained for solvolyses of phe- The methanolysis gb-nitrobenzyl chloroformate in ace-
nyl-(1=1.68 + 0.10,m=0.57 + 0.063* and methyl chlorofor- tone was studied at several temperatures and over a wide
mate (=1.59 + 0.09/m=0.58 + 0.05}*2over the full range of range of methanol concentration. Experimental second-order
solvent, and ethyl chloroformaté=(.56 + 0.09,m=0.55+ rate constants, calculated according to Eg. (3), are reported
0.03)* in more nucleophilic and least ionizing solvents, in Table 2.
suggesting that the addition-elimination pathway, well estab- s
lished for solvolyses of these chloroformates also applies to d[HCI}/dt=k> [o-NBC][MeOH] (3)
p-nitrobenzyl chloroformate solvolysis in this range of sol- Plots of the experimental second-order rate constant against
vents. the initial methanol concentrations are linear (correlation
The kinetic solvent isotope effect valleidor/kueon) for  coefficient> 0.998) and show positive intercepts on the Y-
p-nitrobenzyl chloroformate in methanol showed 2.42. Thisaxis ;) (Figure 2).
value is within the range 1.8-2.8 predicted for a general-base From these results, the kinetics fenitrobenzyl chloro-
catalysed and/or addition-elimination pathwa? But the  formate was found to be represented by Eq. (4), and the val-
values for isopropyl chloroformatp;methoxybenzoyl and ues of the second-orderk;Y and third-order Kz) rate
p-methoxybenzyl chlorides, which are known to solvolyzeconstants in Table 3 were obtained from the intercepts and
by a unimolecular pathway, are close to unity, being in thelopes, respectively.
range 1.1-1.37% 5
The partitioning between solvolysis (with acid formation) d[HCI/dt = ke[p-NBC][MeOH] + ks p-NBC][MeOH]
and decomposition (without acid formation) has been stud- (ke = ko + kiMeOH] ) 4)
ied for four solvents. All of the reaction in four solvents  Briody?? and Ros% had assumed that acyl halides would
obtained the products of mixed carbonate est@rs ( react with traces of water within the acetone or acetonitrile
NO2CeHsCHOCG, Tfe andp-NOCeH4CH,OCOEL) andp-  put not with the solvent itself. Therefore, the rates of back-
nitrobenzyl alcohol -NO:Ce¢H4CH,OH) formed by loss of  ground solvolysis in the absence of methanol were negligi-
carbon dioxide from the unstable hydrogen carbonate estgjle relation to the rates with the lowest alcohol concent-
solvolizedby attack of water at the acyl carbon. However, ration.
the p-nitrobenzyl chloride §-NO2CsHsCHCI) formed by As in the case of the reaction of alcohol withitroben-
decomposition (with loss of carbon dioxide) was notzoyl chloride’®???* the third-order rate constanks) is
obtained. believed to be associated with general-base catalysis to
This observation suggests that the solvolysis of the sulinvolve the deprotonation of a first formed tetrahedral inter-
strate is a bimolecular attack at the acyl carbon, rather thanrediate to give a second intermediate. Regeneration of the
competition between decomposition and capture by four solcarbonyl group from the first intermediate would favour loss
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present nucleophilic attack by methanol without general-
base catalysis.

Table 2. Experimental second-order rate constantsr the
reaction of 0.0285 M-nitrobenzyl chloroformate with methanol in
acetone at various temperatures

10°k;" (I - mole’lsec?)

Experimental Section

MeOH (M)
40.0°C 45.0°C 50.0°C _ _

165 6482005 8641003 1062011 p-Nitrobenzyl chloroformate (Aldrichp-NO.CsH4CH,O-
1.20 532+001 731+001 8.85+005 COC_:I) was recrystallized from petrole_u_m ether, mp_32-_34
1.00 4754004 631+0002 7.76+0.02 °C (lit.*® 33.5-34°C). Solvents were purified and the kinetic
0.80 4.25+0.002 565+0.001 7.08+0.003 runs carried out as previously describétiThe products
0.60 3.70+0.02 4.98+0.001 6.34+0.04 were directly analyzed by gas chromatography as previously
0.40 3124001 4.25+001 5.39+0.01 described? All determinations were carried out at least in

apverage of all points from duplicated runs, with standard deviation. ~ duplicate.

Table 3. Second- and third-order rate constdatsvarious tem- References

peratures

Temp. fC) 1. Kivinen, A.In The Chemistry of Acyl HalidePatai, S.,

40.0 45.0 50.0

2
10%; (I - mole™* - sech)P 2.08 2.83 3.75
10%s (I? - mole? - sech)® 2.68 3.56 4.17
rd 0.9998 0.9976 0.9969 3
ke/kz (I - mole™?) 1.29 1.26 1.11

aCalculated fronk,” = ko+ks[MeOH)], using the data of Table ’ZHJT.,

= 47 kJ-mol, ASy . = -205 J-mofK™, AH, . = 35 kJ - mot, 4.

AS;:, =-2413 - mofK™. “Correlation coefficient for the plot.

5.

of methanol rather than chloride ion, and regeneration from
the second intermediate loss of chloride ion rather than
methoxide ion.

(ks/lkz = 1.1-1.3) are similar to the values of 1.1-1.4 for

methanolysis of benzoyl chlorides in acetéh&he close 8.

similarity in ke/k. ratios suggests that similar reaction path-
ways are involved in these studies. Therefore, the metha-

nolysis of this substrate in acetone is believed to react by9.

an addition-elimination pathway as previously repofted.

Also, the values of the enthalpy and entropy of activationLO-

for the methanolysis op-nitrobenzyl chloroformate are

reported in the footnotes to Table 1 and Table 3. These vatl

ues are consistent with the finding by Offband our previ-
ous study??! of similar activation parameters for the alco-
holyses of acyl halides, with a very negative entropy of acti-

vation, and with the bimolecular nature of the proposed;3.

rate-determining step.
In conclusion, the solvolysis g-nitrobenzyl chlorofor-

mate in all the solvents studied and the methanolysis of th&4.

substrate in acetone give no evidence for mechanistic
change. This substrate<1.66,m= 0.47 |/m = 3.53), where
bond making Itvalue) is more progressed than bond break-
ing (mvalue), is indicated to proceed by a dominant addi-

tion-elimination pathway in which the rate determining step17' Koo, I. S.; Lee, .. Oh, J.; Yang, K.: Bentley, T.JMPhys

involves nucleophilic addition. This behaviour is very simi-
lar to those previously reported for solvolyses of other

chloroformate estet$'*2over the full range of solvents. 1g.

Also, these pathway are assisted by general-base catalysis,

either by a second methanol molecule or by an acetone sal9.

vent molecule. The second-order kinetics pathway can re-

6.

. . . 7.
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