Current time in Korea 13:43 May 12 (Wed) Year 2021 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 12, Number 2
BKCSDE 12(2)
February 20, 1991 

A Theoretical Study of a Z-DNA Crystal: Structure of Counterions, Water and DNA Molecules
Ho Soon Kim, Byung Jin Mhin, Chang Woo Yoon, C. X. Wang, Kwang S. Kim*
To study the effect of solvents and counterions in Z-DNA crystal of d(5BrC-G-5BrC-G-5BrC-G), we performed the local energy analysis and then molecular dynamics simulations. Since counterions raise serious caging problems in crystal simulations, it is very important to search for the possible positions before simulations. For this purpose, the local energy analysis was done for the whole crystal volume. It is shown from our simulation that counterions along with water molecules play a bridging role to bind adjacent oligomers so as to form the crystal. In this crystal, each water molecule bound to Gua-N2H, either directly or indirectly, hydrates the adjacent anionic phosphate oxygen, and thus assists Gua to be in a syn position. From the simulation, the average root-mean-square deviation of allthe DNA heavy atom coordinates from the X-ray data is 0.99 Å. The bases are less deviated from the X-ray positions than the phosphates. The temperature factors from the simulation are consistent with those from the X-ray refinement, showing that the phosphates are more mobile than the bases.
214 - 219
Full Text