Current time in Korea 11:21 May 25 (Sat) Year 2019 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 7, Number 5
BKCSDE 7(5)
May 20, 1986 

 
Title
MNDO Studies on Intramolecular Proton Transfer Equilibria of Acetamide and Methyl Carbamate
Author
Ikchoon Lee*, Chang Kon Kim, Heon Su Seo
Keywords
Abstract
Intramolecular proton transfer equilibria of acetamide and methyl carbamate have been studied theoretically by MNDO MO method. For both substrates, carbonyl-O protonated tautomer was found to be the most stable form, the next most stable one being N-protonated form. Gas phase proton transfers take place by the 1,3-proton rearrangement process and in all cases have prohibitively high activation barriers. When however one solvate water molecule participates in the process, the barriers are lowered substantially and the process proceeds in an intermolecular manner through the intermediacy of the water molecule via a triple-well type potential energy surface; three wells correspond to reactant(RC), intermediate(IC) and product complex(PC) of proton donor-acceptor pairs whereas two transition states(TS) have proton-bridge structure. General scheme of the process can be represented for a substrate with two basic centers(heteroatoms) of A and B as, ABH+ + H2O → ABH+…OH2 → AB…H+…OH2 → AB… H+OH2 Intramolecular proton transfer equilibria of acetamide and methyl carbamate have been studied theoretically by MNDO MO method. For both substrates, carbonyl-O protonated tautomer was found to be the most stable form, the next most stable one being N-protonated form. Gas phase proton transfers take place by the 1,3-proton rearrangement process and in all cases have prohibitively high activation barriers. When however one solvate water molecule participates in the process, the barriers are lowered substantially and the process proceeds in an intermolecular manner through the intermediacy of the water molecule via a triple-well type potential energy surface; three wells correspond to reactant(RC), intermediate(IC) and product complex(PC) of proton donor-acceptor pairs whereas two transition states(TS) have proton-bridge structure. General scheme of the process can be represented for a substrate with two basic centers(heteroatoms) of A and B as, [...] Involvement of a second solvate water had negligible effect on the relative stabilities of the tautomers but lowered barrier heights by 5∼6 Kcal/mol. It was calculated that the abundance of the methoxy-O protonated tautomer of the methyl carbamate will be negligible, since the tautomer is unfavorable thermodynamically as well as kinetically. Fully optimized stationary points are reported. Involvement of a second solvate water had negligible effect on the relative stabilities of the tautomers but lowered barrier heights by 5∼6 Kcal/mol. It was calculated that the abundance of the methoxy-O protonated tautomer of the methyl carbamate will be negligible, since the tautomer is unfavorable thermodynamically as well as kinetically. Fully optimized stationary points are reported.
Page
395 - 399
Full Text
PDF