Current time in Korea 00:40 Aug 19 (Mon) Year 2019 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 35, Number 11
BKCSDE 35(11)
November 20, 2014 

Mass Balance Method for Purity Assessment of Organic Reference Materials: for Thermolabile Materials with LC-UV Method
Joonhee Lee, Byungjoo Kim*
Purity assay, Thermolabile organic substance, LC-UV, K-F coulometry, TGA
A mass balance method for purity assessment of thermolabile organic reference materials was established by combining several techniques, including liquid chromatography with UV/VIS detector (LC-UV), Karl-Fischer (K-F) Coulometry, and thermal gravimetric analysis (TGA). This method was applied to three fluoroquinolones like enrofloxacin, norfloxacin and ciprofloxacin. LC-UV was used to analyze structurally related organic impurities based on UV/VIS absorbance spectra obtained in combination with LC separation. For all three organic reference materials, the UV/VIS spectra of the separated impurities were similar to that of the major component of the corresponding materials. This indicates that the impurities are structurally related to the respective reference material sharing common chromophores. Impurities could be quantified by comparing their absorbances at the wavelength of maximum absorbance (λmax). The water contents of the reference materials were measured by K-F Coulometry by an oven-drying method. The total inorganic impurities contents were assayed from ash residues in TGA analysis with using air as a reagent gas. The final purities estimated from results of those analytical techniques were assigned as (99.91 ± 0.06), (97.09 ± 0.17) and (91.85 ± 0.17)% (kg/kg) for enrofloxacin, norfloxacin and ciprofloxacin, respectively. The assigned final purities would be applied to the reference materials which will be used as calibrators for the certification of those compounds in matrix CRMs as starting points for the traceability of their certified values to SI units.
3275 - 3279
Full Text