Current time in Korea 00:12 Jun 13 (Sun) Year 2021 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 35, Number 4
BKCSDE 35(4)
April 20, 2014 

Biological Toxicities and Aggregation Effects of L-Glycine and L-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution
Sanghyun Park, Byungkwan Song, Hoon Young Kong, Jonghoe Byun, Cheong-Soo Hwang*
ZnS:Mn nanocrystal, Glycine capping, Alanine capping, Cytotoxicity, Aggregation
In this study, water-dispersible ZnS:Mn nanocrystals were synthesized by capping the surface with conventional and simple structured amino acid ligands: L-Glycine and L-Alanine. The ZnS:Mn-Gly and ZnS:Mn-Ala nanocrystal powders were characterized by XRD, HR-TEM, EDXS, ICP-AES, and FT-IR spectroscopy. The optical properties were measured by UV-Visible and photoluminescence (PL) spectroscopy. The PL spectra for the ZnS:Mn-Gly and ZnS:Mn-Ala showed broad emission peaks at 599 nm and 607 nm with PL efficiencies of 6.5% and 7.8%, respectively. The measured average particle size from the HR-TEM images were 6.4 ± 0.8 nm (ZnS:Mn-Gly) and 4.1 ± 0.5 nm (ZnS:Mn-Ala), which were also supported by Debye-Scherrer calculations. In addition, the degree of aggregation of the nanocrystals in aqueous solutions were measured by a hydrodynamic light scattering method, which showed formation of sub-micrometer size aggregates for both ZnS:Mn-Gly (273 ± 94 nm) and ZnS:Mn-Ala (233 ± 34 nm) in water due to the intermolecular attraction between the capping amino acids molecules. Finally, the cytotoxic effects of ZnS:Mn-Gly and ZnS:Mn-Ala nanocrsystals over the growth of wild type E. coli were investigated. As a result, no toxicity was shown for the ZnS:Mn-Gly nanocrystal in the colloidal concentration region from 1 μg/mL to 1000 μg/mL, while ZnS:Mn- Ala showed significant toxicity at 100 μg/mL.
1169 - 1176
Full Text