Current time in Korea 21:25 Dec 01 (Tue) Year 2020 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 35, Number 1
BKCSDE 35(1)
January 20, 2014 

Rh-Ni and Rh-Co Catalysts for Autothermal Reforming of Gasoline
Yeon-Gyu Jung, Dae Hyung Lee,, Yongmin Kim, Jin Hee Lee, Suk-Woo Nam, Dae-Ki Choi, Chang Won Yoon*
Autothermal reforming, Bimetallic catalyst, CeO2-Al2O3, Gasoline, Carbon coking
Rh doped Ni and Co catalysts, Rh-M/CeO2(20 wt %)-Al2O3 (0.2 wt % of Rh; M = Ni or Co, 20 wt %) were synthesized to produce hydrogen via autothermal reforming (ATR) of commercial gasoline at 700 oC under the conditions of a S/C ratio of 2.0, an O/C ratio of 0.84, and a gas hourly space velocity (GHSV) of 20,000 h1. The Rh-Ni/CeO2(20 wt %)-Al2O3 catalyst (1) exhibited excellent activities, with H2 and (H2+CO) yields of 2.04 and 2.58 mol/mol C, respectively. In addition, this catalyst proved to be highly stable over 100 h without catalyst deactivation, as evidenced by energy dispersive spectroscopy (EDX) and elemental analyses. Compared to 1, Rh-Co/CeO2(20 wt %)-Al2O3 catalyst (2) exhibited relatively low stability, and its activity decreased after 57 h. In line with this observation, elemental analyses confirmed that nearly no carbon species were formed at 1 while carbon deposits (10 wt %) were found at 2 following the reaction, which suggests that carbon coking is the main process for catalyst deactivation.
231 - 235
Full Text