Current time in Korea 00:03 Mar 30 (Sat) Year 2024 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 31, Number 7
BKCSDE 31(7)
July 20, 2010 

 
Title
The Investigation of a Novel Indicator System for Trace Determination and Speciation of Selenium in Natural Water Samples by Kinetic Spectrophotometric Detection
Author
Ramazan GURKAN*, Halil ?brahim ULUSOY
Keywords
Selenium speciation and determination, Calmagite, Catalytic effect, Kinetic spectrophotometry, Natural waters
Abstract
A novel catalytic kinetic method is proposed for the determination of Se(IV), Se(VI) and total inorganic selenium in water based on the catalytic effect of Se(IV) on the reduction of bromate by p-nitrophenylhydrazine at pH 3.0. The generated bromine, Br2 or Cl2 plus Br2 in 0.1 M NaCl (or NaBr) environment efficiently decolorized Calmagite and the reaction was monitored spectrophotometrically at 523 nm as a function of time. In this indicator reaction, bromide acted as an activator for the catalysis of selenium (IV) and a reducing agent for selenium (VI) at pH 3.0, which allowed the determination of total selenium. The fixed time method was adopted for the determination and speciation of inorganic selenium. Under the optimum conditions, the calibration graph are linear in the range 1 - 35 ug L-1 of Se(IV) for the fixed time method at 25 oC. The detection limit based on statistical 3Sblank/m-criterion was 0.215 ug L-1 for the fixed time method (7 min). All of the variables that affect the sensitivity at 523 nm were investigated, and the optimum conditions were established. The interference effect of various cations and anions on the Se (IV) determination was also studied. The selectivity of the selenium determination was greatly improved with the use of the strongly cation exchange resin such as Amberlite IR120 plus. The proposed kinetic method was validated statistically and through recovery studies in natural water samples. The RSDs for ten replicate measurements of 5, 15 and 25 ug L-1 of Se(IV) and Se(VI) was changed between 2.1 - 4.85%. Analyses of a certified standard reference material (NIST SRM 1643e) for selenium using the fixed-time method showed that the proposed kinetic method has good accuracy. Se(IV), Se(VI) and total inorganic selenium in environmental water samples have been successfully determined by this method after selective reduction of Se(VI) to Se(IV).
Page
1907 - 1914
Full Text
PDF