Current time in Korea 11:02 Dec 03 (Thu) Year 2020 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 29, Number 7
BKCSDE 29(7)
July 20, 2008 

Aminolysis of 2,4-Dinitrophenyl 2-Furoate and 2-Thiophenecarboxylate: Effect of Modification of Nonleaving Group from Furoyl to Thiophenecarbonyl on Reactivity and Mechanism
Ik-Hwan Um*, Se-Won Min, Sun-Mee Chuna
Aminolysis, Mechanism, Brønsted-type plot, Rate-determining step, Nonleaving group
Second-order rate constants have been determined spectrophotometrically for reactions of 2,4-dinitrophenyl 2- thiophenecarboxylate (2) with a series of alicyclic secondary amines in 80 mol % H2O/20 mol % DMSO at 25.0 ± 0.1 oC. The Brønsted-type plot exhibits a downward curvature, i.e., the slope decreases from 0.74 to 0.34 as the amine basicity increases. The pKa at the center of the Brønsted curvature, defined as pKao, has been determined to be 9.1. Comparison of the Brønsted-type plot for the reactions of 2 with that for the corresponding reactions of 2,4-dinitrophenyl 2-furoate (1) suggests that reactions of 1 and 2 proceed through a common mechanism, although 2 is less reactive than 1. The curved Brønsted-type plot has been interpreted as a change in RDS of a stepwise mechanism. The replacement of the O atom in the furoyl ring by an S atom (1 → 2) does not alter the reaction mechanism but causes a decrease in reactivity. Dissection of the apparent second-order rate constants into the microscopic rate constants has revealed that the k2/k?1 ratio is not influenced upon changing the nonleaving group from furoyl to thiophenecarbonyl. However, k1 has been calculated to be smaller for the reactions of 2 than for the corresponding reactions of 1, indicating that the C=O bond in the thiophenecarboxylate 2 is less electrophilic than that in the furoate 1. The smaller k1 for the reactions of 2 is fully responsible for the fact that 2 is less reactive than 1.
1359 - 1363
Full Text