Current time in Korea 11:08 Feb 26 (Wed) Year 2020 KCS KCS Publications
KCS Publications
My Journal Log In Register
HOME > Search > Advanced Search

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 29, Number 2
BKCSDE 29(2)
February 20, 2008 

Synthesis of Mesoporous Carbons with Controllable N-Content and Their Supercapacitor Properties
Jeongnam Kim, Minkee Choi, Ryong Ryoo*
Nitrogen doping, Mesoporous carbon, EDLC
A synthesis route to ordered mesoporous carbons with controllable nitrogen content has been developed for high-performance EDLC electrodes. Nitrogen-doped ordered mesoporous carbons (denoted as NMC) were prepared by carbonizing a mixture of two different carbon sources within the mesoporous silica designated by KIT-6. Furfuryl alcohol was used as a primary carbon precursor, and melamine as a nitrogen dopant. This synthesis procedure gave cubic Ia3d mesoporous carbons containing nitrogen as much as 13%. The carbon exhibited a narrow pore size distribution centered at 3-4 nm with large pore volume (0.6-1 cm3 g?1) and high specific BET surface area (700-1000 m2 g?1). Electrochemical behaviors of the NMC samples with various Ncontents were investigated by a two-electrode measurement system at aqueous solutions. At low current density, the NMC exhibited markedly increasing capacitance due to the increase in the nitrogen content. This result could be attributed to the enhanced surface affinity between carbon electrode and electrolyte ions due to the hydrophilic nitrogen functional groups. At high current density conditions, the NMC samples exhibited decreasing specific capacitance against the increase in the nitrogen content. The loss of the capacitance with the N-content may be explained by high electric resistance which causes a significant IR drop at high current densities. The present results indicate that the optimal nitrogen content is required for achieving high power and high energy density simultaneously.
413 - 416
Full Text