Current time in Korea 03:52 Apr 17 (Wed) Year 2024 KCS KCS Publications
KCS Publications
My Journal  Log In  Register
HOME > Search > Browsing(BKCS) > Archives

Bulletin of the Korean Chemical Society (BKCS)

ISSN 0253-2964(Print)
ISSN 1229-5949(Online)
Volume 28, Number 12
BKCSDE 28(12)
December 20, 2007 

 
Title
TDDFT Potential Energy Functions for Excited State Intramolecular Proton Transfer of Salicylic Acid, 3-Aminosalicylic Acid, 5-Aminosalicylic Acid, and 5-Methoxysalicylic Acid
Author
Sungwoo Jang, Sung Il Jin, Chan Ryang Park*
Keywords
Intramolecular proton transfer, ESIPT, GSIPT, TDDFT, Salicylic acid
Abstract
We report the application of time-dependent density functional theory (TDDFT) to the calculation of potential energy profile relevant to the excited state intramolecular proton transfer (ESIPT) processes in title molecules. The TDDFT single point energy calculations along the reaction path have been performed using the CIS optimized structure in the excited state. In addition to the Stokes shifts, the transition energies including absorption, fluorescence, and 0-0 transition are estimated from the TDDFT potential energy profiles along the proton transfer coordinate. The excited state TDDFT potential energy profile of SA and 3ASA resulted in very flat function of the OH distance in the range ROH = 1.0-1.6 A, in contrast to the relatively deep single minimum function in the ground state. Furthermore, we obtained very shallow double minima in the excited state potential energy profile of SA and 3ASA in contrast to the single minimum observed in the previous work. The change of potential energy profile along the reaction path induced by the substitution of electron donating groups (-NH2 and -OCH3) at different sites has been investigated. Substitution at para position with respect to the phenolic OH group showed strong suppression of excited state proton dislocation compared with unsubstitued SA, while substitution at ortho position hardly affected the shape of the ESIPT curve. The TDDFT results are discussed in comparison with those of CASPT2 method.
Page
2343 - 0
Full Text
PDF